Hubbard model
imported>Pythagoras0님의 2015년 3월 29일 (일) 20:29 판 (→related items)
introduction
- The Hubbard model describes hopping electrons on a lattice
 - 1968 Lieb and Wu
- application of Bethe ansatz
 
 - 1972 Takahasi
- string hypothesis
 - replace the Lieb-Wu equations by simpler ones
 - proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
 
 - algebraic Bethe ansatz for the Hubbard model
 
 
 
Lieb-Wu equations
- describing Eigenstates of the Hubbard Hamiltonian
 - Bethe ansatz equation
 
\[\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u},\,j=1,\cdots, N\] \[\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u},\,l=1,\cdots, M\]
 
 
 
string hypothesis
history
 
 
encyclopedia
 
books
articles
- Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230.
 - Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:10.1143/JPSJ.56.1340.