Dimer model

수학노트
imported>Pythagoras0님의 2016년 3월 3일 (목) 00:17 판 (section 'articles' updated)
둘러보기로 가기 검색하러 가기

introduction



basic notions

  • dimer configurations
  • set of dimer configurations
  • partition function
  • Kasteleyn matrix
  • height function
  • spectral curve
  • surface tension



Termperley equivalence

  • spanning trees on \gamma rooted at x
  • dimers on D(\gamma)



Domino tiling and height function

  • bipartite graph



energy and weight systems

  • define a weight function on the edges of the graph \gamma\(w:E(\Gamma)\to \mathbb{R}_{\geq 0}\)
  • For a dimer configuration D,\(w(D)=\prod_{e\in D} w(e)\)
  • energy function\(\epsilon:E(\Gamma)\to \mathbb{R}\)
  • For a dimer configuration D,\(\epsilon(D)=\sum_{e\in D} \epsilon(e)\)
  • energy and weight function\(w(e)=\exp (-\frac{\epsilon(e)}{T})\)
  • partition function\(Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)\)



fH

  • P(z_1,z_2,w) if weights are positive real., then P=0 is a Harnack curve of genus
  • g=|int(N)|
  • P(z_0,z_2)=0 is harnack if the amoeba map is at most 2-to-1.





memo




history



related items



encyclopedia



links



expositions

articles

  • Wangru Sun, Toroidal Dimer Model and Temperley's Bijection, http://arxiv.org/abs/1603.00690v1
  • Cimasoni, David, and Nicolai Reshetikhin. “Dimers on Surface Graphs and Spin Structures. II.” Communications in Mathematical Physics 281, no. 2 (July 2008): 445–68. doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.
  • Wang, Fa, and F. Y. Wu. “Exact Solution of Close-Packed Dimers on the Kagomé Lattice.” Physical Review E 75, no. 4 (April 19, 2007): 040105. doi:10.1103/PhysRevE.75.040105.
  • http://www.physics.neu.edu/faculty/wu%20files/pdf/Wu217_PRE74_020104%28R%29.pdf
  • Kenyon, Richard, and Andrei Okounkov. “Limit Shapes and the Complex Burgers Equation.” arXiv:math-ph/0507007, July 1, 2005. http://arxiv.org/abs/math-ph/0507007.
  • Kenyon, Richard, and Andrei Okounkov. “Planar Dimers and Harnack Curves.” arXiv:math/0311062, November 5, 2003. http://arxiv.org/abs/math/0311062.
  • Kenyon, Richard, Andrei Okounkov, and Scott Sheffield. “Dimers and Amoebae.” arXiv:math-ph/0311005, November 5, 2003. http://arxiv.org/abs/math-ph/0311005.
  • Kenyon, Richard, and Scott Sheffield. “Dimers, Tilings and Trees.” arXiv:math/0310195, October 13, 2003. http://arxiv.org/abs/math/0310195.
  • Cohn, Henry, Richard Kenyon, and James Propp. “A Variational Principle for Domino Tilings.” Journal of the American Mathematical Society 14, no. 02 (April 1, 2001): 297–347. doi:10.1090/S0894-0347-00-00355-6.
  • Kenyon, Richard. “Conformal Invariance of Domino Tiling.” The Annals of Probability 28, no. 2 (April 2000): 759–95. doi:10.1214/aop/1019160260.
  • Kenyon, Richard. “The Asymptotic Determinant of the Discrete Laplacian.” Acta Mathematica 185, no. 2 (September 1, 2000): 239–86. doi:10.1007/BF02392811.
  • W. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), 757–773.
  • Kasteleyn, P. W. 1963. Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4, no. 2: 287. doi:10.1063/1.1703953.
  • Fisher, Michael E. “Statistical Mechanics of Dimers on a Plane Lattice.” Physical Review 124, no. 6 (December 15, 1961): 1664–72. doi:10.1103/PhysRev.124.1664.
  • Kasteleyn, P. W. “The Statistics of Dimers on a Lattice: I. The Number of Dimer Arrangements on a Quadratic Lattice.” Physica 27, no. 12 (December 1961): 1209–25. doi:10.1016/0031-8914(61)90063-5.