Induced sign representations and characters of Hecke algebras

수학노트
http://bomber0.myid.net/ (토론)님의 2012년 5월 1일 (화) 07:51 판
둘러보기로 가기 검색하러 가기
introduction

 

  • Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].

 

 

induced sign characters
  • Unfortunately, the known formulas for induced sign characters of Sn are not among these.
  • For induced sign characters of Hn(q), we conjecture formulas which specialize at q=1 to formulas for induced sign characters of Sn.
  • We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.

 

 

Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n

1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k}

2 For each coset of the form wW_{\lambda},

define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v}

If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v)

3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda}

4 this left multiplication can be expressed as matrix multiplication

Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v.

Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v.

 

the trace/ch

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links