Chern-Simons gauge theory and Witten's invariant

수학노트
imported>Pythagoras0님의 2013년 2월 10일 (일) 04:27 판 (→‎introduction)
둘러보기로 가기 검색하러 가기

introduction

\[S=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{1}{3}A\wedge [A,A])\]

Chern-Simons partition function

  • path integral defined by Witten

$$ Z_k(M)=\int e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\ $$ where \(e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\): formal probability measure on the space of all connections, coming from quantum field theory

asymptotic expansion

$$ Z_k(M)\approx \frac{1}{2}e^{-3\pi i/4}\sum_{\alpha}\sqrt{T_{\alpha}(M)} e^{-2\pi i I_{\alpha}/4} e^{2\pi (k+2) \operatorname{CS}(A)} $$ where the sum is over flat connections $\alpha$


Jones Polynomial

\[\langle K\rangle=\int {\operatorname{Tr}(\int_{K} A)}e^{2\pi i k \operatorname{CS}(A)}DA=(q^{1/2}+q^{-1/2})V(K,q^{-1})\] where the Chern-Simons action \({\operatorname{Tr}(\int_{K} A)}\) measures the twisting of the connection along the knot

 

 

 

 

 

M : threefold

\(P\to M\) : principal G-bundle

\(F=A\wedge dA+A\wedge A\)

\(\operatorname{det}(I+\frac{iF}{2\pi})= c_0+c_1+c_2\)

\(c_3=A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A\)

\(c_2=\frac{1}{8\pi^2} \operatorname{tr} F\wedge F =dc_3\)

\(\int_M c_3\)

 

 

Morse theory approach

  • Taubes, Floer interpret the Chern-Simons function as a Morse function on the space of all gauge fields modulo the action of the group of gauge transformations
  • analogous to Euler characteristic of a manifold can be computed as the signed count of Morse indices

 

 

Chern-Simons invariant

 

 

memo

 

 

history

 

 

related items

 

encyclopedia


question and answers(Math Overflow)

 

expositions

 

articles


links