Bailey pair and lemma
introduction
- q-Pfaff-Sallschutz sum
Bailey pair
- the sequence \(\{\alpha_r\}, \{\beta_r\}\) satisfying the following is called a Bailey pair relative to a
\(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\) - conjugate Bailey pair \(\{\delta_r\}, \{\gamma_r\}\)
\(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}=\sum_{r=0}^{\infty}\frac{\delta_{r+L}}{(q)_{r}(aq)_{r+2L}}\) - Note that the summation for a conjugate Bailey pair is different from that of a Bailey pair
examples of Bailey pair
how to obtain and check Bailey pair?
- various complicated q-series identities
why do we care about Bailey pair?
- When we have a Bailey pair, we can produce q-series identities
- (1) Bailey lemma gives an identity involving q-series
- (2) using the definition of Bailey pair
\(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\)
- (1) Bailey lemma gives an identity involving q-series
Bailey lemma
- Bailey lemma involved a Bailey pair and a conjugate Bailey pair
- If the sequence \(\{\alpha_r\}, \{\beta_r\}\), \(\{\delta_r\}, \{\gamma_r\}\) satisfy the following
\(\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}\), \(\gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}\)
then,
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
specialization
- Choose the following (in the following, x=aq to get a Bailey pair relative to a)
\(u_{n}=\frac{1}{(q)_n}\) ,\(v_{n}=\frac{1}{(x)_n}\), - There is a conjugate Bailey pair
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\)
\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
(proof)
By the basic analogue of Gauss' theorem
(Recall \(\sum_{n=0}^{\infty}\frac{(a,q)_{n}(b,q)_{n}}{(c ,q)_{n}(q ,q)_{n}}(\frac{c}{ab})^{n}=\frac{(c/a;q)_{\infty}(c/b;q)_{\infty}}{(c;q)_{\infty}(c/(ab);q)_{\infty}}\), q-analogue of summation formulas )
Also note that \((a)_{n+r}=(a)_{r}(aq^{r})_{n}\) and \((a)_{\infty}=(a)_{r}(aq^{r})_{\infty}\)
Put \(a=yq^{r},b=zq^{r},c=xq^{2r}\).
Then we get (*)
\(A=\sum_{n=0}^{\infty}\frac{(yq^{r})_{n}(zq^{r})_{n}}{(xq^{2r})_{n}(q)_{n}}(\frac{x}{yz})^{n}=\frac{(xq^{r}/y)_{\infty}(xq^{r}/z)_{\infty}}{(xq^{2r})_{\infty}(x/(yz))_{\infty}}=B\)
From the left hand side,
\(A=\sum_{n=0}^{\infty}\frac{(yq^{r})_{n}(zq^{r})_{n}}{(xq^{2r})_{n}(q)_{n}}(\frac{x}{yz})^{n}=\frac{(x)_{2r}}{(y)_{r}(z)_{r}}\sum_{n=0}^{\infty}\frac{(y)_{n+r}(z)_{n+r}}{(x)_{n+2r}(q)_{n}}(\frac{x}{yz})^{n}=\frac{(x)_{2r}y^{r}z^{r}}{(y)_{r}(z)_{r}x^{r}}\sum_{n=0}^{\infty}\frac{(y)_{n+r}(z)_{n+r}}{(x)_{n+2r}(q)_{n}}(\frac{x}{yz})^{n+r}\)
Now let
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\) so that
\(A=\frac{(x)_{2r}y^{r}z^{r}}{(y)_{r}(z)_{r}x^{r}}\sum_{n=0}^{\infty}\frac{\delta_{n+r}}{(x)_{n+2r}(q)_{n}}\)
From the right hand side of (*), we get
\(B=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(x)_{2r}}{(x/y)_{r}(x/z)_{r}}\)
Therefore,
\(A=\frac{(x)_{2r}y^{r}z^{r}}{(y)_{r}(z)_{r}x^{r}}\sum_{n=0}^{\infty}\frac{\delta_{n+r}}{(x)_{n+2r}(q)_{n}}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(x)_{2r}}{(x/y)_{r}(x/z)_{r}}=B\)
By simplifying the above equation, we obtain
\(\sum_{n=0}^{\infty}\frac{\delta_{n+r}}{(x)_{n+2r}(q)_{n}}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{1}{(x/y)_{r}(x/z)_{r}}\frac{(y)_{r}(z)_{r}x^{r}}{y^{r}z^{r}}\)
\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) with \(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\) gives a conjugate Bailey pair
(a different notation
\(\gamma_n=\prod{{x/y,x/z;q}\choose {x,x/yz;}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
is also used sometimes) ■
- If we apply Bailey lemma to the above conjugate pair, we get
\(\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}\)
examples
- Conjugate Bailey pair (\(x=q,y\to\infty, z\to\infty\))
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\) - Bailey pair
\(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\) - we get the Rogers-Ramanujan identity(Slater 18)
\(\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)
Bailey chain
history
- Bloch group
- Bloch group, K-theory and dilogarithm
- manufacturing matrices from lower ranks
- q-analogue of summation formulas
- Rogers-Ramanujan continued fraction
encyclopedia
- http://en.wikipedia.org/wiki/Bailey_pair
- http://en.wikipedia.org/wiki/Wilfrid_Norman_Bailey
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
expositions
- 50 Years of Bailey's lemma S. Ole Warnaar, 2009
articles
- A generalization of the q-Saalschutz sum and the Burge transform
- A. Schilling, S.O. Warnaar, 2009
- A. Schilling, S.O. Warnaar, 2009
- Rogers-Ramanujan-Slater Type identities
- Mc Laughlin, 2008
- Mc Laughlin, 2008
- Andrews–Gordon type identities from combinations of Virasoro characters
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Finite Rogers-Ramanujan Type Identities
- Andrew V. Sills, 2003
- Andrew V. Sills, 2003
- Virasoro character identities from the Andrews–Bailey construction
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Multiple series Rogers-Ramanujan type identities.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
- Special values of the dilogarithm function
- J. H. Loxton, 1984
- Wilfrid Norman Bailey
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Identities of Rogers-Ramanujan type
- Bailey, 1944
- Bailey, 1944
- On two theorems of combinatory analysis and some allied identities
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[1]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1112/plms/s2-53.6.460
question and answers(Math Overflow)
blogs
experts on the field