Constrained system : U(1) pure gauge theory
imported>Pythagoras0님의 2012년 10월 29일 (월) 09:50 판
introduction
- U(1) pure gauge theory : theory of light (without matter)
\(\mathcal{L}_{\text{free}} = - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\) - quantization of the photon field http://www.ecm.ub.es/~espriu/teaching/classes/fae/LECT4.pdf
- fix the gauge
- quantize unconstrained system
- gives physical and unphysical states (negative norm states)
- impose the constraint condition to remove negative norm states
- we get a Hilbert space of physical states
Gupta-Bleuler quantization of QED
- Gupta-Bleuler Method http://en.wikipedia.org/wiki/Gupta–Bleuler_formalism
remark
- if matter exists, we get QED
\(\mathcal{L}_{\text{free}} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field