Monoidal categorifications of cluster algebras

수학노트
imported>Pythagoras0님의 2012년 10월 28일 (일) 14:38 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기

introduction

  • replace cluster variables by modules

 

 

notions

  • quiver : oriented graph
  • representation of a quiver : collection of vector space and linear maps between them
  • homomorphism of 2 quiver representations
  • path algebra of a quiver
    • given a quiver Q, a path p is a sequence of arrows with some conditions
    • path algebra : set of all k-linear combinations of all paths (including e_i's)
    • p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))
  • quiver representation is in fact, a representaion of path algebra of a quiver

 

 

Caldero-Chapoton formula

  • CC(V) =\chi_{V}

 

 

monoidal categorification

M : monoidal categorification

M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if

(i) cluster monomials' of A are the classes of real simple objects of M

(ii) cluster variables' of a (including coefficients) are classes of real prime simple objects

 

 

\prop

Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series

(find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)

Then

(i) each cluster variable of a has positivie Laurent expansion with respect to any cluster

(ii) cluster monomials are linearly independent

 

 

 

periodicity conjecture

  • outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams

 

 

 

history

 

 

related items

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

articles==    

question and answers(Math Overflow)

 

blogs

 

 

experts on the field

 

 

links