Monoidal categorifications of cluster algebras

수학노트
imported>Pythagoras0님의 2013년 10월 8일 (화) 06:25 판
둘러보기로 가기 검색하러 가기

introduction

  • replace cluster variables by modules



Caldero-Chapoton formula

  • CC(V) =\chi_{V}



monoidal categorification

  • M : monoidal categorification
  • M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if
  1. cluster monomials' of A are the classes of real simple objects of M
  2. cluster variables' of a (including coefficients) are classes of real prime simple objects


proposition

  • Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series, (i.e., find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)
  • Then
  1. each cluster variable of a has positivie Laurent expansion with respect to any cluster
  2. cluster monomials are linearly independent


periodicity conjecture

  • outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams



history



related items



expositions


articles

  • David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
  • Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.
  • Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. 1003.2652 (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
  • Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. math/0604054 (4월 3). http://arxiv.org/abs/math/0604054.
  • Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. math/0410187 (10월 7). http://arxiv.org/abs/math/0410187.