Donaldson-Thomas theory

수학노트
imported>Pythagoras0님의 2014년 6월 11일 (수) 14:05 판
둘러보기로 가기 검색하러 가기

introduction

  • The Donaldson-Thomas invariant of a Calabi-Yau 3-fold Y (complex projective manifold of dimension 3 with nowhere vanishing holomorphic 3-form) can be thought of as a generalization of the Donaldson invariant.
  • It was defined by virtual integrals on the moduli space of stable sheaves on Y and expected to count algebraic curves in Y.


categorification conjecture

  • The categorification conjecture due to Kontsevich-Soibelman, Joyce-Song, Behrend-Bryan-Szendroi and others claims that there should be a cohomology theory on the moduli space of stable sheaves whose Euler number coincides with the Donaldson-Thomas invariant.
  • I will talk about recent progress about the categorification conjecture by using perverse sheaves. Locally the moduli space is the critical locus of a holomorphic function on a complex manifold called a Chern-Simons chart and we have the perverse sheaf of vanishing cycles on the critical locus. By constructing suitable Chern-Simons charts and homotopies using gauge theory, it is possible to glue the perverse sheaves of vanishing cycles to obtain a globally defined perverse sheaf whose hypercohomology is the desired categorified Donaldson-Thomas invariant.
  • As an application, we can provide a mathematical theory of the Gopakumar-Vafa (BPS) invariant.
  • I will also discuss wall crossing formulas for these invariants.


history

  • In 1980s, Donaldson discovered his famous invariant of 4-manifolds which was subsequently proved to be an integral on the moduli space of semistable sheaves when the 4-manifold is an algebraic surface.
  • In 1994, the Seiberg-Witten invariant was discovered and conjectured to be equivalent to the Donaldson invariant (still open).
  • In late 1990s, Taubes proved that the Seiberg-Witten invariant also counts pseudo-holomorphic curves.


memo

 

related items

 

expositions


 

articles

  • Bridgeland, Tom, Yu Qiu, and Tom Sutherland. “Stability Conditions and the $A_2$ Quiver.” arXiv:1406.2566 [math], June 10, 2014. http://arxiv.org/abs/1406.2566.
  • Kiem, Young-Hoon, and Jun Li. “Categorification of Donaldson-Thomas Invariants via Perverse Sheaves.” arXiv:1212.6444 [math], December 23, 2012. http://arxiv.org/abs/1212.6444.
  • Nagao, Kentaro. 2010. “Donaldson-Thomas theory and cluster algebras.” 1002.4884 (February 26). http://arxiv.org/abs/1002.4884
  • Sergio Cecotti, Andrew Neitzke, Cumrun Vafa, 2010, R-Twisting and 4d/2d Correspondences
  • M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations


 

question and answers(Math Overflow)