Nekrasov-Okounkov hook length formula
imported>Pythagoras0님의 2015년 3월 24일 (화) 19:52 판
introduction
- expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory
$$ \prod_{n=1}^{\infty}(1-x^n)^{\beta-1}=\sum_n\sum_{\lambda \vdash n}\sum_{v\in H(\lambda)}(1-\frac{\beta}{h_v^2})x^{|\lambda|} $$ $h_v$ is the hook of the box $v$ in the Young tableau of $\lambda$.
memo
articles
- Han, Guo-Niu. ‘The Nekrasov-Okounkov Hook Length Formula: Refinement, Elementary Proof, Extension and Applications’. arXiv:0805.1398 [math], 9 May 2008. http://arxiv.org/abs/0805.1398.