Motive
geometry roughly= cohomology
examples
circle S^1
Betti cohomolgy (singular cohomology)
H^0(S^1,Z)=Z
H^1(S^1,Z)=Z
\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1
Betti cohomology is same
H^0(\mathbb{G}_m,Z)=Z
H^1(\mathbb{G}_m,Z)=Z , this is dual to H_1(\mathbb{G}_m,Z) we can call the generator as \(\gamma_0^{\vee}\) where \(\gamma_0\) is the homology generator.
de Rham cohomology
H^0_{dR}(\mathbb{G}_m)=\mathbb{C}
H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}
De Rham isomorphism
H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C} is a perfect pairing
(\gamma,\omega) \to \int_{\gamma}\omega
i.e. H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}
question. under this isomorphism, \frac{dz}{z} = c\times \(\gamma_0^{\vee}\) what is c?
c = \int_{\gamma_0}