Motive
geometry roughly= cohomology
example
circle S^1
Betti cohomolgy (singular cohomology)
H^0(S^1,Z)=Z
H^1(S^1,Z)=Z
\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1
Betti cohomology is same
H^0(\mathbb{G}_m,Z)=Z
H^1(\mathbb{G}_m,\mathbb{Z})=Z , this is dual to H_1(\mathbb{G}_m,Z) we can call the generator as \(\gamma_0^{\vee}\) where \(\gamma_0\) is the homology generator.
de Rham cohomology
H^0_{dR}(\mathbb{G}_m)=\mathbb{C}
H^1_{dR}(\mathbb{G}_m)=\mathbb{C}\frac{dz}{z}
De Rham isomorphism
H^1(\mathbb{G}_m,Z) \times H^1_{dR}(\mathbb{G}_m) \to \mathbb{C} is a perfect pairing
(\gamma,\omega) \to \int_{\gamma}\omega
i.e. H^1_{dR}(\mathbb{G}_m) = ^1(\mathbb{G}_m,Z)\otimes_{\mathbb{Z}}\mathbb{C}
question. under this isomorphism, \frac{dz}{z} = c\times \(\gamma_0^{\vee}\) what is c?
c = \int_{\gamma_0}\frac{dz}{z} = 2\pi i
Etale cohomology
exponential map : \mathbb{C}\to \mathbb{C}^{*}
H^1(\mathbb{G}_m,\mathbb{Z}) = Hom(\pi_1(\mathbb{C}^{*}),\mathb{Z})
Let l be a prime.
H^1_{et}(\mathbb{G}_m,\mathbb{Q}_{l}) is a 1-dimensional \mathbb{Q}_{l} vector space on which Gal(\bar{\mathbb{Q}}/\mathbb{Q}) acts.
We get a character called the cyclotomic character.
general picture
k field (Q,F_q,C,\cdots)
from (separable finit type k-schemes) to category of motives
- Betti cohomology Vec over Q
- de Rham cohomology Vec over k
- if l\neq char(k) etal cohomology vec over \mathbb{Q}_l
- crystalline cohomology Vec over \mathbb{Q}_p
(category of motives) can do linear algebra
\mathbb{Q}-linear \otimes cate