Anomalous magnetic moment of electron
imported>Pythagoras0님의 2015년 3월 17일 (화) 18:31 판
introduction
- amplitude = sum of integrals = \(\sum_{n\text{ loops}}\) sum of integrals
- anomalous electron magnetic dipole moment 1.00115965219
- theoretical computation matches 11 digits with experiments
- as n grows, number of Feynman diagrams grows exponentially
- integrals are becoming difficult
Lande's question
- Bohr magneton \(\mu_0=e\hbar /2mc\)
- spin magnetic dipole moment \(\mu_s\)
- Q. \(\mu_s=\mu_0\) ? (Back and Lande 1925)
- We define $g$ to be the gyromagnetic ratio
\[\mu_s=\frac{g\mu_0}{2}\]
classical magnetic moment
- read spin system first
- gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum"
\[\gamma = \mu/L=-e/2m_e\] [/pages/7141159/attachments/4562863 I15-62-g20.jpg]
- pictures from Gyromagnetic Ratio and Anomalous Magnetic Moment
orbital
- Let $e$, $m_e$, $v$, and $r$ be the electron's charge, mass, velocity, and radius, respectively.
- A classical electron moving around a nucleus in a circular orbit
- orbital angular momentum, \(L=m_evr\)
- magnetic dipole moment, \(\mu= -evr/2\)
- we get $\gamma=\mu/L=-e/2m_e$
spin
- A classical electron of homogeneous mass and charge density rotating about a symmetry axis
- spin angular momentum, \(L=(3/5)m_eR^2\Omega\)
- magnetic dipole moment, \(\mu= -(3/10)eR^2\Omega\), where $R$ and $\Omega$ are the electron's classical radius and rotating frequency
- we get \(\gamma = \mu/L=-e/2m_e\)
anamalous electron magnetic dipole moment
Dirac theory
- In Dirac’s theory a point like spin 1/2 object of electric charge $q$ and mass $m$ has a magnetic moment
\[\mathbf{\mu}=q\mathbf{S}/m\]
- so the Bohr magneton of the electron becomes
\[\mu_\mathrm{B} = {{e \hbar} \over {2 m_\mathrm{e}}}\] since the spin of the electron is \(S=\frac{\hbar}{2}\)
g-factor
- there are correction terms to the spin magnetic moment of the electron as shown by experiments
- actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)
\[\vec{\mu}_S \ = g_e \mu_\mathrm{B} \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}\]
- The g factor sets the strength of an electron’s interaction with a magnetic field.
classical vs quantum
- In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path.
- In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon.
[/pages/3589069/attachments/4562673 2004329152457_150.gif]
- vertex correction
$$g = 2 ( 1 + \alpha/2\pi)$$ where $$\alpha= e^2/(4\pi \hbar c) \sim 1/137.036$$ is the fine structure constant
- http://www.wolframalpha.com/input/?i=1%2F%28137*2pi%29
- The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis.
$$g/2=1+c_1\frac{\alpha}{2\pi}+c_2(\frac{\alpha}{2\pi})^2+c_3(\frac{\alpha}{2\pi})^3+\cdots=1.00115965219+\cdots$$
Feynmann diagrams
tree level and one-loop diagrams
- 1 one-loop diagram
[/pages/7141159/attachments/4563145 2004329152921_150.gif] - Feynman, Julian Schwinger, Sin-Itiro Tomonaga and Freeman Dyson
- Schwinger showed that the one-loop contribution to the "anomalous magnetic moment" of the electron is \(\alpha/{2\pi}=0.00116\cdots\)
- Schwinger, Julian. 1948. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review 73, no. 4 (February 15): 416. doi:10.1103/PhysRev.73.416.
- http://www.wolframalpha.com/input/?i=fine+structure+constant%2F%282pi%29
two-loop diagrams
- 7 two-loop diagrams
[/pages/3589069/attachments/4562669 2004329153354_150.gif]
[/pages/7141159/attachments/4562733 I15-62-g2c.jpg]
three-loop diagrams
- 72 three-loop diagrams
- [/pages/3589069/attachments/4562671 200432915395_150.gif]
- Kinoshita, Toichiro. 1995. New Value of the alpha^{3} Electron Anomalous Magnetic Moment. Physical Review Letters 75, no. 26 (December 25): 4728. doi:10.1103/PhysRevLett.75.4728.
four-loop diagrams
- 891 diagrams
five-loop Feynman diagrams
- There are 12,672
- http://www.strings.ph.qmul.ac.uk/~bigdraw/feynman/slide3.html[1]
anaomalous muon magnetic dipole moment
- anaomalous muon magnetic dipole moment is still unknown
- http://eskesthai.blogspot.com/2010/12/muon.html
memo
computational resource
- https://docs.google.com/file/d/0B8XXo8Tve1cxZG1ma0RHQmp0Rk0/edit
- number of Feynman diagrams http://oeis.org/A005413
encyclopedia
- http://en.wikipedia.org/wiki/G-factor_%28physics%29
- http://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment
- http://en.wikipedia.org/wiki/Bohr_magneton
expositions
- Xiaoyi, anomalous magnetic moment
- Brian Hayes, “g-OLOGY,” American Scientist 92, no. 3 (2004): 212. http://www.americanscientist.org/issues/num2/g-ology/1
- http://www.youtube.com/watch?v=akZPBbPzdNQ
- http://www.youtube.com/watch?v=cLRRfvuVQ0k
articles
- Broadhurst, D. J, and D. Kreimer. 1996. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. hep-th/9609128 (September 16). doi:doi:10.1016/S0370-2693(96)01623-1. http://arxiv.org/abs/hep-th/9609128.
- 1948 슈와잉거 (J. Schwinger, Phys.Rev. 73(1948) 416L)
books
- Mandl, Franz, and Graham Shaw. 2010. Quantum Field Theory. John Wiley & Sons. http://books.google.de/books/about/Quantum_Field_Theory.html?id=Ef4zDW1V2LkC&redir_esc=y
- chapter 9.6