Mathematical Physics by Carl Bender

수학노트
imported>Pythagoras0님의 2020년 11월 13일 (금) 08:05 판
둘러보기로 가기 검색하러 가기

list


lecture 1 perturbation method

  • solve $x^5+x=1$

method 1

  • try $x^5+\epsilon x=1$
  • find $x(\epsilon)$ satisfying $x(\epsilon)^5+\epsilon x(\epsilon)=1$
  • answer

$$x(\epsilon)=1-\frac{\epsilon }{5}-\frac{\epsilon ^2}{25}-\frac{\epsilon ^3}{125}+\frac{21 \epsilon ^5}{15625}+\frac{78 \epsilon ^6}{78125}+\cdots$$

  • Setting $\epsilon=1$ gives numerical value $0.75\cdots$


weak coupling approach

  • use the similar idea to Feynman diagrams
  • try $\epsilon x^5+ x=1$
  • we get

$$ x(\epsilon)=1-\epsilon +5 \epsilon ^2-35 \epsilon ^3+285 \epsilon ^4-2530 \epsilon ^5+23751 \epsilon ^6+\cdots $$

  • can we get a meaningful number out of this?
  • yes, for example, Pade summation can be used


asymptotics

  • $f\sim g\, \quad (x\to x_0)$ iff $$\lim_{x\to x_0}\frac{f(x)}{g(x)}=1$$
  • apply the method of dominant balance to $\epsilon x^5+ x=1$
  • $x^4\sim -1/\epsilon\, \quad (\epsilon \to 0)$ and thus

$$x\sim \frac{\omega}{\epsilon^{1/4}}\, \quad (\epsilon \to 0)$$ where $\omega^4=-1$

  • this is the first order approximation and we can have more terms


lecture 2

second order ordinary differential equation

  • 틀:수학노트
  • $y+Q(x)y=0$ Schrodinger equation
  • this is a very hard problem to solve
  • consider a perturbed equation $y+\epsilon Q(x)y=0$ so that its unperturbed equation is $y=0$ with initial conditions $y(0)=\alpha, y'(0)=\beta$
  • take the formal solution $y(x)=\sum_{n}a_n(x)\epsilon^n$ where $a_0(x)=\alpha+\beta x$
  • for it to be a solution, it should satisfy

$$ a_n''(x)=-Q(x)a_{n-1}(x) $$ for each $n>0$

  • thus we get

$$ a_n(x)=-\int_0^x\int_0^t Q(s)a_{n-1}(s)\,ds\,dt $$

eigenvalue problem

  • Schrodinger equation

$$ -\left(\frac{d^2}{dx^2} + V(x)\right)\psi=E \psi $$

  • if $V(x)=x^2/4$, we get harmonic oscillator
  • anharmonic oscillator problem (similar to Phi-4 theory)

$$ -\left(\frac{d^2}{dx^2} +x^2/4+x^4/4\right)\psi=E \psi $$

  • perturbed version

$$ -\left(\frac{d^2}{dx^2} +x^2/4+\epsilon x^4/4\right)\psi(\epsilon)=E(\epsilon)\psi(\epsilon) $$

  • $E(\epsilon)=\sum_n a_n(x)\epsilon^n$
  • $\psi(\epsilon)=\sum_n \psi_n(x)\epsilon^n$
  • ground state $\psi_0(x)=e^{-x^2/2}$ with $a_0=1/2$

Riemann surface and discrete spectrum

  • analytic continuation using the parameter $\epsilon$ gives all the energy states
  • they correspond to different sheets of a Riemann surface


lecture 3

  • Shanks transform for alternating series
  • two examples


computational resource


books

  • Bender, Carl M., and Steven A. Orszag. 1999. Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer.