거듭제곱근 체확장(radical extension)

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 2일 (금) 08:35 판 (찾아 바꾸기 – “* [http://navercast.naver.com/science/list ” 문자열을 “” 문자열로)
둘러보기로 가기 검색하러 가기

이 항목의 스프링노트 원문주소

 

 

 

개요

 

 

 

거듭제곱근 체확장(radical extension)

  • 기본체 \(F=F_0\)
  • 다음조건을 만족시키는 \(F\)의 체확장 \(K=F(a_1,a_2,\cdots,a_r)\)를 거듭제곱근 체확장이라 한다
    자연수 \(n_1,\cdots,n_r\)이 존재하여, \(a_1^{n_1}\in F\) 이고 \(1<i\leq r\)에 대하여 \(a_i^{n_i} \in F(a_1,a_2,\cdots,a_{i-1})\)
  • 풀어쓰면 다음과 같다
    원소 \(b_1\in F\)와 자연수 \(n_1\)에 대하여, 거듭제곱근 \(a_1=\sqrt[n_1]b_1\) 를 추가하여 얻어지는 체확장 \(F_1=F(a_1)=F(\sqrt[n_1]b_1)\)
    원소 \(b_2\in F_1\)와 자연수 \(n_2\)에 대하여, 거듭제곱근 \(a_2=\sqrt[n_2]b_2\) 를 추가하여 얻어지는 체확장 \(F_2=F_1(b_2)=F_1(\sqrt[n_2]a_2)\)
    이러한 체확장을 유한번 반복하여 얻어지는  \(F=F_0\)의 체확장을 거듭제곱근 체확장이라 한다

  • \(\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2})(\sqrt{\sqrt{2}})=\mathbb{Q}(\sqrt[4]2)\)
    \(\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2}, \sqrt{3})\)

 

 

거듭제곱근 체확장의 갈루아군

  • 갈루아 군의 정의는 갈루아 이론 항목을 참조
  • 체 F가 primitive root of unity 를 가진다고 하자. 
  • F의 거듭제곱근 체확장 \(K=F(\sqrt[n]a)\) 의 갈루아군은 크기가 n인 순환군이다
    \(\text{Gal}(K/F)\cong C_n\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 


 

 


 

 


 

 

블로그

네이버 ]