Gaussian Orthogonal Ensemble
imported>Pythagoras0님의 2016년 6월 29일 (수) 00:50 판
introduction
- The Gaussian orthogonal ensemble GOE(n) is described by the Gaussian measure with density
\[ \frac{1}{Z_{\text{GOE}(n)}} e^{- \frac{n}{4} \mathrm{tr} H^2} \] on the space of $n\times n$ real symmetric matrices $H=(H_{ij})$
- Its distribution is invariant under orthogonal conjugation, and it models Hamiltonians with time-reversal symmetry
level spacing of eigenvalues
- From the ordered sequence of eigenvalues \(\lambda_1 < \ldots < \lambda_n < \lambda_{n+1} < \ldots\), one defines the normalized spacings \(s = (\lambda_{n+1} - \lambda_n)/\langle s \rangle\), where \(\langle s \rangle =\langle \lambda_{n+1} - \lambda_n \rangle\) is the mean spacing.
- The probability distribution of spacings is approximately given by,
\[ p_1(s) = \frac{\pi}{2}s\, \mathrm{e}^{-\frac{\pi}{4} s^2} \] for the orthogonal ensemble GOE \(\beta=1\)