Finite dimensional representations of Sl(2)
imported>Pythagoras0님의 2012년 10월 28일 (일) 14:41 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
introduction
- [[affine sl(2) $A^{(1)} 1$]]
 - quantum sl(2)
 
specialization==
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
 
- root system
\(\Phi=\{\alpha,-\alpha\}\)
 
 
 
representation theory==
- integrable weights and Weyl vector
\(\omega=\frac{1}{2}\alpha\)
\(\rho=\omega\)
 
- there is a unique k+1 dimensional irreducible module \(V_k\) with the highest integrable weight \(\lambda=k\omega\)
 
- Weyl-Kac formula
\(\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\)
 
 
 
character formula and Chebyshev polynomial of the 2nd kind==
- \(U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\)
U_0[x]=1
U_1[x]=2 x
U_2[x]=-1+4 x^2
U_3[x]=-4 x+8 x^3
 
- character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
\(U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}\)
 
- \(w=e^{i\theta}\),\(z=w+w^{-1}=2\cos\theta\)
\(p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}\)
\(p_{0}(z)=1\)
\(p_{1}(z)=z\)
\(p_{2}(z)=z^2-1\)
\(p_{3}(z)=z^3-2z\)
\(p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)\)
 
 
 
Hermite reciprocity
- [GW1998]
 
- dimension of symmetric algebra and exterior algebra of V_k
 
 
 
symmetric power of sl(2) representations==
- q-binomial type formula (Heine formula,useful techniques in q-series)
\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
 
- the character of j-th symmetric power of V_k is
\(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
where the q-analogue of the natural number is defined as 
\([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\)
 
 
(proof)
Fix a k throughout the argument.
Let \(F_j(q)\) be the character of j-th symmetric power of V_k.
\(F_j(q)=\sum_{m_0,\cdots,m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)
where \(m_0+m_1+\cdots+m_k=j\)
Now consider the generating function
\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j\)
I claim that
\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j=\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}\). 
To prove that see the power series expansion of a factor\[(1-zq^{k-2j})^{-1}=\sum_{m=0}^{\infty}z^mq^{m(k-2j)}\]. Therefore
\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{m_0,\cdots,m_k}z^{m_0+\cdots+m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)
Now we can easily check
\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)■
 
 
exterior algebra of sl(2) representations==
- q-binomial type formula (Gauss formula,useful techniques in q-seriesq-analogue of summation formulas)
\(\prod_{j=0}^{k}(1+zq^{k-2j})}=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\)
 
- the character of j-th exterior algebra of V_k is
\(\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\)
 
 
(proof)
analogous to the above. ■
 
 
 
Clebsch-Gordan coefficients
 
 
Catalan numbers
- http://qchu.wordpress.com/2010/03/07/walks-on-graphs-and-tensor-products/
 
- http://mathoverflow.net/questions/17197/how-does-this-relationship-between-the-catalan-numbers-and-su2-generalize
 
- f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
Table[Simplify[f[2 k]], {k, 1, 10}]
Table[CatalanNumber[n], {n, 1, 10}] 
 
 
 
history
 
 
- [[affine sl(2) $A^{(1)} 1$]]
 
- cyclotomic numbers and Chebyshev polynomials
 
- Weyl-Kac character formula
 
- Macdonald constant term conjecture
 
 
 
encyclopedia==
- q-이항정리
 
- 체비셰프 다항식
 
- http://en.wikipedia.org/wiki/
 
- http://www.scholarpedia.org/
 
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
 
 
books
- [GW1998]Goodman and Wallach,Representations and invariants of the classical groups
 
- 2010년 books and articles
 
- http://gigapedia.info/1/
 
- http://gigapedia.info/1/
 
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
articles==
2010년 books and articles
- SL(2,C), SU(2), and Chebyshev polynomials
- Henri Bacry, J. Math. Phys. 28, 2259 (1987)
 
 
- http://www.ams.org/mathscinet
 
- http://www.zentralblatt-math.org/zmath/en/
 
- http://pythagoras0.springnote.com/
 
- http://math.berkeley.edu/~reb/papers/index.html
 
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
- http://dx.doi.org/10.1063/1.527759
 
 
 
question and answers(Math Overflow)
 
 
blogs
 
 
experts on the field
 
 
links
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
\(\Phi=\{\alpha,-\alpha\}\)
- integrable weights and Weyl vector
\(\omega=\frac{1}{2}\alpha\)
\(\rho=\omega\) - there is a unique k+1 dimensional irreducible module \(V_k\) with the highest integrable weight \(\lambda=k\omega\)
 
- Weyl-Kac formula
\(\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\) 
- \(U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\)
U_0[x]=1
U_1[x]=2 x
U_2[x]=-1+4 x^2
U_3[x]=-4 x+8 x^3 - character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
\(U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}\) - \(w=e^{i\theta}\),\(z=w+w^{-1}=2\cos\theta\)
\(p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}\)
\(p_{0}(z)=1\)
\(p_{1}(z)=z\)
\(p_{2}(z)=z^2-1\)
\(p_{3}(z)=z^3-2z\)
\(p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)\) 
- q-binomial type formula (Heine formula,useful techniques in q-series)
\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\) - the character of j-th symmetric power of V_k is
\(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
where the q-analogue of the natural number is defined as
\([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\) 
exterior algebra of sl(2) representations==
- q-binomial type formula (Gauss formula,useful techniques in q-seriesq-analogue of summation formulas)
\(\prod_{j=0}^{k}(1+zq^{k-2j})}=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\)
 
- the character of j-th exterior algebra of V_k is
\(\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\)
 
 
(proof)
analogous to the above. ■
 
 
 
\(\prod_{j=0}^{k}(1+zq^{k-2j})}=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\)
\(\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\)
Clebsch-Gordan coefficients
Catalan numbers
- http://qchu.wordpress.com/2010/03/07/walks-on-graphs-and-tensor-products/
 - http://mathoverflow.net/questions/17197/how-does-this-relationship-between-the-catalan-numbers-and-su2-generalize
 
- f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
Table[Simplify[f[2 k]], {k, 1, 10}]
Table[CatalanNumber[n], {n, 1, 10}] 
history
- [[affine sl(2) $A^{(1)} 1$]]
 
- cyclotomic numbers and Chebyshev polynomials
 - Weyl-Kac character formula
 - Macdonald constant term conjecture
 
encyclopedia==
- q-이항정리
 
- 체비셰프 다항식
 
- http://en.wikipedia.org/wiki/
 
- http://www.scholarpedia.org/
 
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
 
 
books
- [GW1998]Goodman and Wallach,Representations and invariants of the classical groups
 
- 2010년 books and articles
 
- http://gigapedia.info/1/
 
- http://gigapedia.info/1/
 
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
articles==
2010년 books and articles
- SL(2,C), SU(2), and Chebyshev polynomials
- Henri Bacry, J. Math. Phys. 28, 2259 (1987)
 
 
- http://www.ams.org/mathscinet
 
- http://www.zentralblatt-math.org/zmath/en/
 
- http://pythagoras0.springnote.com/
 
- http://math.berkeley.edu/~reb/papers/index.html
 
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
- http://dx.doi.org/10.1063/1.527759
 
 
 
question and answers(Math Overflow)
 
 
blogs
 
 
experts on the field
 
 
links
- SL(2,C), SU(2), and Chebyshev polynomials
- Henri Bacry, J. Math. Phys. 28, 2259 (1987)
 
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 - http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 - http://dx.doi.org/10.1063/1.527759
 
question and answers(Math Overflow)
blogs
experts on the field