Finite dimensional representations of Sl(2)

수학노트
imported>Pythagoras0님의 2012년 10월 28일 (일) 17:03 판
둘러보기로 가기 검색하러 가기

introduction

 

 

specialization==
  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • root system
    \(\Phi=\{\alpha,-\alpha\}\)
   
representation theory==
  • integrable weights and Weyl vector
    \(\omega=\frac{1}{2}\alpha\)
    \(\rho=\omega\)
  • there is a unique k+1 dimensional irreducible module \(V_k\) with the highest integrable weight \(\lambda=k\omega\)
  • Weyl-Kac formula
    \(\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\)
   
character formula and Chebyshev polynomial of the 2nd kind==
  • \(U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\)
    U_0[x]=1
    U_1[x]=2 x
    U_2[x]=-1+4 x^2
    U_3[x]=-4 x+8 x^3
  • character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
    \(U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}\)
  • \(w=e^{i\theta}\),\(z=w+w^{-1}=2\cos\theta\)
    \(p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}\)
    \(p_{0}(z)=1\)
    \(p_{1}(z)=z\)
    \(p_{2}(z)=z^2-1\)
    \(p_{3}(z)=z^3-2z\)
    \(p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)\)
   

Hermite reciprocity

  • [GW1998]
  • dimension of symmetric algebra and exterior algebra of V_k

 

 

symmetric power of sl(2) representations==
  • q-binomial type formula (Heine formula,useful techniques in q-series)
    \(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
  • the character of j-th symmetric power of V_k is
    \(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
    where the q-analogue of the natural number is defined as 
    \([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\)
  (proof) Fix a k throughout the argument. Let \(F_j(q)\) be the character of j-th symmetric power of V_k. \(F_j(q)=\sum_{m_0,\cdots,m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\) where \(m_0+m_1+\cdots+m_k=j\) Now consider the generating function \(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j\) I claim that \(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j=\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}\).  To prove that see the power series expansion of a factor\[(1-zq^{k-2j})^{-1}=\sum_{m=0}^{\infty}z^mq^{m(k-2j)}\]. Therefore \(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{m_0,\cdots,m_k}z^{m_0+\cdots+m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\) Now we can easily check \(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)■    
exterior algebra of sl(2) representations==
  • q-binomial type formula (Gauss formula,useful techniques in q-seriesq-analogue of summation formulas)
    \(\prod_{j=0}^{k}(1+zq^{k-2j})}=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\)
  • the character of j-th exterior algebra of V_k is
    \(\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\)
  (proof) analogous to the above. ■      

Clebsch-Gordan coefficients

 

 

Catalan numbers

  1. f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
    Table[Simplify[f[2 k]], {k, 1, 10}]
    Table[CatalanNumber[n], {n, 1, 10}]

 

 

 

history

 

 

related items

  • [[affine sl(2) $A^{(1)} 1$]]

 

 

encyclopedia==    

books

 

 

articles== 2010년 books and articles    

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links