Finite dimensional representations of Sl(2)
introduction
specialization
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - root system
\(\Phi=\{\alpha,-\alpha\}\)
representation theory
- integrable weights and Weyl vector
\(\omega=\frac{1}{2}\alpha\)
\(\rho=\omega\) - there is a unique k+1 dimensional irreducible module \(V_k\) with the highest integrable weight \(\lambda=k\omega\)
- Weyl-Kac formula
\(\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\)
character formula and Chebyshev polynomial of the 2nd kind
- \(U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\)
U_0[x]=1
U_1[x]=2 x
U_2[x]=-1+4 x^2
U_3[x]=-4 x+8 x^3 - character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
\(U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}\) - \(w=e^{i\theta}\),\(z=w+w^{-1}=2\cos\theta\)
\(p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}\)
\(p_{0}(z)=1\)
\(p_{1}(z)=z\)
\(p_{2}(z)=z^2-1\)
\(p_{3}(z)=z^3-2z\)
\(p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)\)
Hermite reciprocity
- [GW1998]
- dimension of symmetric algebra and exterior algebra of V_k
symmetric power of sl(2) representations
- q-binomial type formula (Heine formula,useful techniques in q-series)
\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\) - the character of j-th symmetric power of V_k is
\(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
where the q-analogue of the natural number is defined as
\([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\)
(proof)
Fix a k throughout the argument.
Let \(F_j(q)\) be the character of j-th symmetric power of V_k.
\(F_j(q)=\sum_{m_0,\cdots,m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)
where \(m_0+m_1+\cdots+m_k=j\)
Now consider the generating function
\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j\)
I claim that
\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j=\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}\).
To prove that see the power series expansion of a factor\[(1-zq^{k-2j})^{-1}=\sum_{m=0}^{\infty}z^mq^{m(k-2j)}\]. Therefore
\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{m_0,\cdots,m_k}z^{m_0+\cdots+m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)
Now we can easily check
\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)■
exterior algebra of sl(2) representations
- q-binomial type formula (Gauss formula,useful techniques in q-seriesq-analogue of summation formulas)
\[\prod_{j=0}^{k}(1+zq^{k-2j})=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\]
- the character of j-th exterior algebra of V_k is \[\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\]
(proof)
analogous to the above. ■
Clebsch-Gordan coefficients
Catalan numbers
- http://qchu.wordpress.com/2010/03/07/walks-on-graphs-and-tensor-products/
- http://mathoverflow.net/questions/17197/how-does-this-relationship-between-the-catalan-numbers-and-su2-generalize
- f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
Table[Simplify[f[2 k]], {k, 1, 10}]
Table[CatalanNumber[n], {n, 1, 10}]
history
encyclopedia
books
- [GW1998]Goodman and Wallach,Representations and invariants of the classical groups
articles
- Bacry, Henri. 1987. “SL(2,C), SU(2), and Chebyshev Polynomials.” Journal of Mathematical Physics 28 (10) (October 1): 2259–2267. doi:10.1063/1.527759.