Degrees and exponents

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 5월 12일 (목) 10:22 판
둘러보기로 가기 검색하러 가기
introduction
  • eigenvalues of Cartan matrices
  • eigenvalues of incidence matrices of Dynkin diagram

 

[1]

 

 

Cartan matrix
  • h : Coxeter number
  • eigenvalue
    \(4\sin^2(\frac{m_{i}\pi}{2h})\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree

 

 

adjacency matrix
  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)

 

  1. Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]
    Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]

 

homological algebraic characterization

For a s.s. Lie algebra L

(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links