Elements of finite order (EFO) in Lie groups

수학노트
imported>Pythagoras0님의 2013년 2월 11일 (월) 13:52 판 (→‎EFO in unitary groups)
둘러보기로 가기 검색하러 가기

introduction

  • explicit formulas for the number of conjugacy classes of EFOs in Lie groups
  • appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
  • $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$
  • $N(G,m,s)$ : number of conjugacy classes of $G$ in $E(G,m,s)$

EFO in unitary groups

$U(n)$

  • $N(G,m)= {n+m-1\choose m-1}$
  • $N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}$

$SU(n)$

  • $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$ if $(n,m)=1$
  • $N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}$ if $(n,m)=1$

related items


computational resource