Elements of finite order (EFO) in Lie groups
imported>Pythagoras0님의 2020년 11월 13일 (금) 16:34 판
introduction
- explicit formulas for the number of conjugacy classes of EFOs in Lie groups
- appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
- $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$
- $N(G,m,s)$ : number of conjugacy classes of $G$ in $E(G,m,s)$
EFO in unitary groups
$U(n)$
- $N(G,m)= {n+m-1\choose m-1}$
- $N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}$
$SU(n)$
- $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$ if $(n,m)=1$
- $N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}$ if $(n,m)=1$
computational resource
OEIS
- type A http://oeis.org/A008610
- type C http://oeis.org/A005993