Quantized coordinate ring

수학노트
imported>Pythagoras0님의 2014년 8월 8일 (금) 20:40 판
둘러보기로 가기 검색하러 가기

introduction

  • $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
  • $G$ : connected, simply-connected simple algebraic group with Lie algebra $\mathfrak{g}$


dual of quantized enveloping algebras

QEA

  • $q\in \mathbb{C}^{\times}$ not a root of 1
  • $U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle$ : quantum enveloping algebra

quantized coordinate algebra

  • $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
  • $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
    • also denoted by $\mathbb{C}_q[G]$
  • We call $A_q(\mathfrak{g})$ the quantized coordinate ring


comodules and modules

  • $\mathbb{C}_q[G]$-comodules = locally finite $U_q(\mathfrak{g})$-modules of type 1
thm (Soibelman)


cluster theory

  • Monoidal categorifications of cluster algebras
  • $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
  • Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
  • Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
  • Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character


related items


articles


books

  • Korogodski, Leonid I., and Yan S. Soibelman. Algebras of Functions on Quantum Groups. American Mathematical Soc., 1998.