Affine sl(2)
Gannon 190p, 193p, 196p,371p
construction
- this is borrowed from affine Kac-Moody algebra entry
 - Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
 - say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha\}\)
 - Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - Find the highest root 
- \(\alpha\)
 
 - \(\alpha\)
 - Add another simple root \(\alpha_0\) to the root system \(\Phi\)
- \(\alpha_0=-\alpha\)
 
 - \(\alpha_0=-\alpha\)
 - Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
 - construct a Lie algebra from the new Cartan matrix \(A'\)
 - Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
\(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\) 
basic quantities
- a_i=1
 - c_i=a_i^{\vee}=1
 - a_{ij}
 - coxeter number
- 2
 
 - 2
 - dual Coxeter number
- 2
 
 - 2
 - Weyl vector
 
root systems
- \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - real roots
- \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 
 - \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 - imaginary roots   
- \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - \(\delta=\alpha_0+\alpha_1\)
 
 - simple roots
- \(\alpha_0,\alpha_1\)
 
 - \(\alpha_0,\alpha_1\)
 - positive roots
- \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
 
 - \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
 
fixing a Cartan subalgebra and its dual
- basis of the Cartan subalgebra H
\(h_0=C-h_1\)
\(h_1\)
\(d=-l_0\) - dual basis for H
\(\omega_0,\omega_1,\delta\) -  
Weyl vector
\(\rho=\sum_{i=0}^{r}\omega_i\) 
killing form
- invariant symmetric non-deg bilinear forms
\(<h_i,h_j>=A_{ij}\)
\(<h_0,d>=1\)
\(<h_1,d>=0\)
\(<d,d>=0\) 
level k highest weight representation
- integrable highest weight
\(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\) - level
\(k=\lambda_{0}+\lambda_{1}\) - therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)
 
central charge
- central charge
\(c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\) - conformal weight
\(h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\) - definition of conformal anomaly
\(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\) 
- strange formula
\(\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\) - very strange formula
 - conformal anomaly 
\(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(\lambda)}{24}\)