Quantized coordinate ring

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 13일 (금) 17:57 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

introduction

  • \(\mathfrak{g}\) : simple Lie algebra over \(\mathbb{C}\)
  • \(G\) : connected, simply-connected simple algebraic group with Lie algebra \(\mathfrak{g}\)


dual of quantized enveloping algebras

QEA

  • \(q\in \mathbb{C}^{\times}\) not a root of 1
  • \(U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle\) : quantum enveloping algebra

quantized coordinate algebra

  • \(U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))\)
  • \(A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}\)
    • also denoted by \(\mathbb{C}_q[G]\)
  • We call \(A_q(\mathfrak{g})\) the quantized coordinate ring


comodules and modules

  • \(\mathbb{C}_q[G]\)-comodules = locally finite \(U_q(\mathfrak{g})\)-modules of type 1
thm (Soibelman)


result of Kuniba, Okado and Yamada

thm

The transition matrix of PBW-type bases of the positive-half of a quantized universal enveloping algebra \(U_q(\mathfrak{g})\) coincides with a matrix coefficients of the intertwiner between certain irreducible modules over the corresponding quantized coordinate ring \(A_q(\mathfrak{g})\), introduced by Soibelman.


cluster theory

  • Monoidal categorifications of cluster algebras
  • \(\mathbb{C}[N]\) is Hopf dual to \(U(\mathfrak{n})\) where \(\mathfrak{n}=Lie(N)\)
  • Ringel, Lusztig : Geometric realization of \(U_q(\mathfrak{n})\) via constructible sheaves on varieties of \(\mathbb{C}Q\)-modules
  • Lusztig : Geometric realization of \(U(n)\) via constructible functions on varieties of \(\Lambda\)-modules
  • Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character


related items


expositions


articles

  • Geiss, Christof, Bernard Leclerc, and Jan Schröer. “Quivers with Relations for Symmetrizable Cartan Matrices III: Convolution Algebras.” arXiv:1511.06216 [math], November 19, 2015. http://arxiv.org/abs/1511.06216.
  • Geiss, Christof, Bernard Leclerc, and Jan Schröer. “Quivers with Relations for Symmetrizable Cartan Matrices II: Change of Symmetrizers.” arXiv:1511.05898 [math], November 18, 2015. http://arxiv.org/abs/1511.05898.
  • Oya, Hironori. “Representations of Quantized Function Algebras and the Transition Matrices from Canonical Bases to PBW Bases.” arXiv:1501.01416 [math], January 7, 2015. http://arxiv.org/abs/1501.01416.
  • Tanisaki, T. “Modules over Quantized Coordinate Algebras and PBW-Bases.” arXiv:1409.7973 [math], September 28, 2014. http://arxiv.org/abs/1409.7973.

books

  • Korogodski, Leonid I., and Yan S. Soibelman. Algebras of Functions on Quantum Groups. American Mathematical Soc., 1998.