Talk on finite-dimensional representations of quantum affine algebras
overview
- f-dim'l repns of affine Lie algebra
- f-dim'l repns of quantum affine algebra
$ \newcommand{\Z}{\mathbb Z} \newcommand{\C}{\mathbb C} \newcommand{\h}{\mathfrak{h}} \newcommand{\g}{\mathfrak{g}} \newcommand{\Lg}{L\g} \newcommand{\ghat}{\widehat{\g}} \newcommand{\uqg}{U_q(\g)} \newcommand{\uqghat}{U_q(\ghat)} \newcommand{\ev}{\operatorname{ev}} \newcommand{\eva}{\operatorname{ev}_{a}} \newcommand{\sltwo}{\operatorname{sl}_{2}} \newcommand{\la}{\lambda} \newcommand{\DP}{\mathbf{P}} $
simple Lie algebra
- $\g$ simple Lie algebra of rank $r$
- generators $\{e_i,f_i,h_i\}_{1\leq i \leq r}$
- classification of finite-dim'l irrep
- every finite-dim'l irrep is a highest weight repn
- bijection between finite-dim'l irrep and dominant integral weight
affine Lie algebra
- $\ghat\supset \g$, generators $\{e_i,f_i,h_i\}_{0\leq i \leq r}$
- every integrable irr. rep'n is a highest weight repn
- bijection between integrable irr. rep'n and dominant integral weight
loop algebra realization of affine Lie algebra
- loop algbera
$$\Lg=\g\otimes\mathbb{C}[t,t^{-1}]$$ $$[\alpha(m),\beta(n)]=[\alpha,\beta]\otimes t^{m+n},\qquad \alpha(m)=\alpha\otimes t^m$$
- affine Lie algebra is a central extension of loop algebra
$$ 0\to \mathbb{C}c \to \ghat \to \Lg \to 0 $$ with $$[\alpha(m),\beta(n)]=[\alpha,\beta]\otimes t^{m+n}+m\delta_{m,-n}\langle \alpha,\beta\rangle c$$ $$[c,x] =0, x\in \ghat$$
- $\langle \cdot,\cdot\rangle$ invariant form on $\g$
f-dim'l repns of $\Lg$
- prop
Let $V$ be a f-dim'l repn of $\ghat$. Then $c$ acts as 0.
- pf
abstract non-sense + highest weight theory for $\sltwo$. ■
- so we study f-dim'l repns of $\Lg=\ghat/\C c$
evaluation repn
- evaluation homomorphism $\eva : \Lg\to \g$ for $a\in \mathbb{C}^{\times}$ defined by
$$ \eva(x\otimes t^m)=a^m x\\ $$
- if $V$ is a $\g$-module, then the pull-back $V(a):=\eva^{*}(V)$ of $V$ is a $\Lg$-module.
- i.e. for $(x\otimes f(t)).v = f(a)xv$
- thm
- Let $V_1,\dots, V_n$ be non-trivial irrep of $\g$. Then $V_1(a_1)\otimes \dots \otimes V_n(a_n)$ is an irrep of $\Lg$ iff $a_i\neq a_j $ for all $i\neq j$
- Every irrep of $\Lg$ is of the form $V_1(a_1)\otimes \dots \otimes V_n(a_n)$
- Let $V_1,\dots, V_n ,W_1,\dots, W_m$ are non-trivial irreps of $\g$. Then $V_1(a_1)\otimes \cdots \otimes V_n(a_n)$ and $W_1(b_1)\otimes \cdots \otimes W_m(b_m)$ are isomorphic if and only if $m = n$ and, up to a permutation of the indices, $V_i = Wi, a_i=b_i$ for every $i=1,\dots, n$
- Q. is an irrep of $\Lg$ a highest-weight representation?
- recall that there are two sets of generators of $\Lg$
- as $\Lg=\ghat/\C c$, $\{e_i,f_i,h_i\}_{0\leq i \leq r}$ are generators of $\Lg$
- loop generators $\{e_i\otimes t^s, f_i\otimes t^s, h_i\otimes t^s\}_{1\leq i \leq r, \qquad s\in \Z}$
- to define notion of highest weight representation, we need to choose "raising operators" that annihilate a highest weight vector
- hence there are two candidates for raising operators
- $\{e_i\}_{0\leq i \leq r}$
- $\{e_i\otimes t^s\}_{1\leq i \leq r, \, s\in \Z}$
example
- $\g=\sltwo$, $e_1,f_1,h_1$
- $\ghat$, $e_0,f_0,h_0,e_1,f_1,h_1$
- we can make identification
$$e_0=f_1\otimes t,\,f_0=e_1\otimes t^{-1},h_0=-h_1+c$$
- $V$ : 2-dim'l standard irrep of $\g$, basis $v_1, v_{-1}$,
- $v_1$ is h.w vector for $\g$; $e_1.v_1 = 0$
- fix $a\in \C^{\otimes}$
- how candidates for raising operators of $\Lg$ act on the evaluation representation $V(a)$?
- $e_0.v_1 = a f_1.v_1 = a v_{-1}$
- $(e_1\otimes t^{s}).v_1 = a^{s} (e_1.v_1) = 0$
- we can say $V(a)$ is a h.w representation of $\Lg$ with $\{e_1\otimes t^{s}\}_{s\in \Z}$ as raising operators
- in general, if we choose $\{e_i\otimes t^s\}_{1\leq i \leq r, \, s\in \Z}$ as raising operators, all $\Lg$-irreps become highest weight representation
how to write highest weights
- we already have a good parametrization for $\Lg$-irreps $\{(\la_1,a_1),\dots, (\la_n,a_n)\}$ with $\la_i$ dominant weights, $a_i\in \C^{\times}$ with $a_i\neq a_j$
- unsatisfactory since the concept of weights for $\g$ or $\ghat$ also has algebraic structure
- weight should encode eigenvalues of Cartan generators $\{h_{i,s}\}$
- we use a different Cartan generators
- define $P_{i,s}\in U(\h)$
$$ P_i(u):=\sum_{s=0}^{\infty}P_{i,s}u^s=\exp \left(-\sum_{s=1}^{\infty}\frac{h_{i,s}}{s}u^s\right) $$ with formal variable $u$
- it turns out
$$ P_{i,s}=\binom{h_i}{s}\otimes (-t)^s $$
- let $V$ be a $\g$-irrep of highest weight $\la$ with h.w. vector $v$. Then
$$ P_i(u).v=\sum_{s=0}^{\infty}(-a)^r\binom{\la(h_i)}{r}u^r v=(1-au)^{\la(h_i)}.v $$
- hence generating function of eigenvalues of $P_{i,s},\, s=0,1,\dots$ gives a polynomial
- we can say $V_1(a_1)\otimes \dots \otimes V_n(a_n)$ is a hightest weight representation whose highest weight is $r$-tuples of polynomials $(1-a_1u)^{\la_1(h_i)}\dots (1-a_nu)^{\la_n(h_i)}$ for each $i=1,\dots,r$
- we can now multiply weights
Drinfeld-Jimbo quantum groups
- let $q\in \C^{\times}$ not a root of 1
- $\g$ symmetrizable Kac-Moody algebra, i.e.
- $C=(c_{i,j})_{1\leq i,j\leq n}$ : generalized Cartan matrix
- there exists non-singular $D=\operatorname{diag}(s_1,\dots,s_n)$ s.t. $B=DC$ is symmetric
- fix unique coprime $s_1,\dots,s_n \in \Z_{>0}$, $q_i:=q^{s_i}$
- two important cases
- $C$ of finite type (principal minors are $>0$)
- $C$ of affine type (proper principal minors are $>0$, $\det C=0$)
- Drinfeld-Jimbo quantum group is $q$-deformation of $U(\g)$
- def
$\uqg$ is the $\C$-algebra defined by generators $x_i^{+}, x_i^{-}, k_{i}^{\pm 1},\, (1\leq i\leq n)$ and relations ...
- $\uqg$ has a Hopf algebra structure
f-dim'l repns of quantum affine algebras
- $\g$ : simple Lie algebra of rank $r$ $I=\{1,\dots, r\}$
- quantum affine algebra $\uqghat$ = Drinfeld-Jimbo quantum group for affine Lie algebra $\ghat$
Drinfeld realization of $\uqghat$
- Thm (Drinfeld-Beck)
$\uqghat$ has another presentation in terms of generators
- $x_{i,n}^{\pm}, i \in I, n \in \Z$
- $k_i^{\pm}, i \in I$
- $h_{i,n}^{\pm}, i \in I, n \neq 0$
- $C^{\pm 1}$
and relations ...
classification of irreps
- for each $i\in I$ let
$$ \begin{aligned} \phi_i^\pm(u) &= \sum_{n=0}^{\infty}\phi_{i,\pm n}^{\pm}u^{\pm n} \\ &= k^{\pm 1}_i \exp \left( \pm (q_i-q_i^{-1}) \sum_{n>0}h_{i,\pm n} u^{\pm n} \right) \end{aligned} $$
- thm (Chari-Pressley)
Let $V$ be an irrep of $\uqghat$. Then $V$ is a $\ell$-highest weight (i.e. highest weight in the sense of Drinfeld realization). In other words, In other words, $V$ is generated by a vector $v$ such
- $x^+_{i,n}v=0$ for all $i \in I, n \in \Z$
- $C^{\pm 1}.v = v$
- $v$ is an eigenvector of $\phi_{i,n}^\pm$ for all $i \in I, n \in \Z$ and
\begin{equation} \phi_i^\pm(u)v = q_i^{\deg(P_i)}\frac{P_i(uq_i^{-1})}{P_i(uq_i)}v \end{equation} for some polynomial $P_i(u)\in \C[u]$, $P_i(0)=1$.
- There is a bijection between $r$-tuples polynomials and iso. class of irreps : $\DP=(P_i(u))_{i\in I}\mapsto V(\DP)$
example
- fundamental representation of $\uqghat$ corresponds to
- $\DP=(1,1,\dots,1,1-au,1,\dots, 1),\, a\in \C^{\times}$, $i$-th position
- Kirillov-Reshetkhin modules correspond to
- $\DP=(1,1,\dots,1,(1-au)(1-aq_i^2u)\dots (1-aq_i^{2(m-1)}u),1,\dots, 1),\, a\in \C^{\times}$, $i$-th position
- hence parametrized by $(i,a,m)\in I\times \C^{\times} \times \Z_{\geq 0}$
KR-module
- type $A_1$
- consider the KR modules $W_{m,a}^{(1)}$
- the irreducible finite dimensional repn of $U_q(\ghat)$ that corresponds to the Drinfeld polynomial
$$ \mathcal{P}(u) =\prod _{i=1}^m \left(1-ua q^{m+1-2i}\right)\in \mathbb{C}[u] $$
- let $v_0^{(m)}$ be a highest weight vector and $\psi_{k}$ be the eigenvalue of $\phi_{1,k}$
- we've seen that
$$ \psi_{0} =q^m $$ and $$ \psi_{k} =a^k q^{k m} \left(q^m-q^{-m}\right),\,k>0 $$ so that $$ \psi_{1}(u)=\sum _{k=0}^{\infty } \psi_k u^k = q^{m}\frac{\mathcal{P}(u q^{-1})}{\mathcal{P}(u q)} $$