Non-unitary c(2,2k+1) minimal models
introduction
central charge and conformal dimensions
- central charge
\(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\) - primary fields have conformal dimensions
\(h_j=-\frac{j(2k-1-j)}{2(2k+1)}\), \(j\in \{0,1,\cdots,k-1\}\) or by setting i=j+1
\(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\) \(i\in \{1,2, \cdots,k\}\) (this is An's notation in his paper) - effective central charge
\(c_{eff}=c-24h_{min}\)
\(c_{eff}=\frac{2k-2}{2k+1}\)
character formula and Andrew-Gordon identity
- Andrews-Gordon identity
- character functions
\(\chi_i(\tau)=q^{h_i-c/24}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\) - to understand the factor \(q^{h-c/24}\), look at the finite size effect page also
- bosonic characters of Virasoro minimal models(Rocha-Caridi formula)
\(\chi_{r,s}^{(p,p')}=\frac{q^{\Delta_{r,s}^{(p,p')}}}{(q)_{\infty}}\sum_{n=-\infty}^{\infty}(q^{pp'n^2+(rp'-sp)n}-q^{(pn+r)(p'n+s)})\)
\(\Delta_{r,s}^{(p,p')}=h_{r,s}^{(p,p')}-\frac{c}{24}\)
Let's specify p=2, p'=2k+1, r=1, s=i
\(\sum_{n=-\infty}^{\infty}(q^{2(2k+1)n^2+(2k+1-2i)n}-q^{(2n+1)((2k+1)n+i)})=\sum_{n=-\infty}^{\infty}(q^{2(2k+1)n^2+(2k+1-2i)n}-\sum_{n=-\infty}^{\infty}q^{(2n+1)((2k+1)n+i)})\)
\(=\sum_{n=-\infty}^{\infty}(q^{2(2k+1)n^2+(2k+1-2i)n}-\sum_{n=-\infty}^{\infty}q^{(2(-n)+1)(-(2k+1)(-n)+i)})\)
\(=\sum_{n=-\infty}^{\infty}(q^{2n\left[(2k+1)(2n)+(2k+1-2i)\right]/2}-\sum_{n=-\infty}^{\infty}q^{(2n-1)\left[(2k+1)(2n-1)+2k-2i+1\right]/2}\)
\(=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}\)
\(=\sum_{n=-\infty}^{\infty}(-1)^n(q^{\frac{(2k-2i+1)}{2}})^{n}(q^{\frac{(2k+1)}{2}})^{n^2}=\prod_{m=1}^{\infty}(1-q^{(2k+1)m})(1-q^{\frac{2k-2i+1}{2}}q^{\frac{2k+1}{2}(2m-1)})(1-q^{-\frac{2k-2i+1}{2}}q^{\frac{2k+1}{2}(2m-1)})\)
\(=\prod_{m=1}^{\infty}(1-q^{(2k+1)m})(1-q^{(2k+1)m-i})(1-q^{(2k+1)m-(2k-i+1)})\)
Thus,
\(\chi_{r,s}^{(p,p')}=q^{\Delta_{r,s}^{(p,p')}}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\)
Using a result from Bailey lattice,
\(\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\)
asympto
different expressions for central charge
- from above
\(h_i-c(2,2k+1)/24\)
\(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\)
\(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\), \(i\in \{1,2, \cdots,k\}\) - L-values
\(\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}\)
Dirichlet L-function
\(L(-1, \chi) = \frac{1}{2f}\sum_{n=1}^{\infty}{\chi(n)}{n}\)
\(n\geq 1\) 이라 하자. 일반적으로 \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}\)에 대하여 \(L(1-n,\chi)\)의 값은 다음과 같이 주어진다
\(L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})\)
\(L(-1,\chi)=L(1-2,\chi)=-\frac{f}{2}\sum_{(a,f)=1}}\chi(a)B_2(\frac{a}{f})\)
여기서 \(B_n(x)\) 는 베르누이 다항식(\(B_0(x)=1\), \(B_1(x)=x-1/2\), \(B_2(x)=x^2-x+1/6\), \(\cdots\))
Let N=2k+1
\(\omega=\exp \frac{2\pi i}{2k+1}\)
G: group of Dirichlet characters of conductor N which maps -1 to 1
G has order k and cyclic generated by \(\chi\)
\(c_i=\frac{1}{2k}\sum_{s=1}^{k}\omega^{is}L(-1,\chi^s)\)
Then,
\(c_i=-\frac{2k+1}{12}+\frac{j(N-j)}{2N}\)
where j satisfies \(\chi(j)=\omega^{k-i}\)
Vacuum energy is given by
\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i\)
Since
\(L(-1,\chi^{k})=\frac{N-1}{12}=\frac{k}{6}\), the vacuum energy
\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i=\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}=\frac{j(2k+1-j)}{2(2k+1)}-\frac{k+1}{12}\).
These are equal to \({h_i-c/24}\)
- k := 5
f[k_, j_] := (2 k)/
24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1)))
Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm
Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm
d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24
Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm
Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm
cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +
1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24
Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
- w := Exp[2 Pi*I*1/k]
L[j_] := -(2 k + 1)/2*
Sum[DirichletCharacter[2 k + 1, j, a]*
BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}]
c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}]
Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],
Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},
PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}]
Table[c[i], {i, 1, 2 k}]
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field