Tilting modules for quantum groups

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 16일 (월) 04:27 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

introduction

  • modules for \(U_q(\mathfrak{g})\)
  • Verma modules \(M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}\)
  • Weyl modules : quotients of Verma modules

\[ W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda}) \]

  • a tilting module is a module \(T\) that admits a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules


expositions


articles

  • Hazi, Amit. “Balanced Semisimple Filtrations for Tilting Modules.” arXiv:1510.02596 [math], October 9, 2015. http://arxiv.org/abs/1510.02596.
  • Andersen, Henning Haahr, Catharina Stroppel, and Daniel Tubbenhauer. “Cellular Structures Using \(\textbf{U}_q\)-Tilting Modules.” arXiv:1503.00224 [math], March 1, 2015. http://arxiv.org/abs/1503.00224.
  • Andersen, Henning Haahr, and Masaharu Kaneda. 2009. “Rigidity of Tilting Modules.” arXiv:0909.2935 [math] (September 16). http://arxiv.org/abs/0909.2935.
  • Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:10.1007/BF02099312.