Current algebra and anomalies in gauge field theory

수학노트
imported>Pythagoras0님의 2015년 3월 12일 (목) 19:24 판
둘러보기로 가기 검색하러 가기

internal algebra of symmetry

  • an internal symmetry is defined by the algebra of generators

$$ [I_{\alpha},I_{\beta}]=c_{\alpha \beta \gamma}I_{\gamma} $$

  • the generators, in turn, are given by the integral over the time-component of the currents

$$ I_{\alpha}=\int d^3x J_{0,\alpha}(x) $$

  • from these equations one obtains the equal-time commutation relation of the currents

$$ [J_{0,\alpha}(\mathbf{x}),J_{0,\beta}(\mathbf{y})]=c_{\alpha \beta \gamma} J_{0,\alpha}(\mathbf{x})\delta(\mathbf{x}-\mathbf{y}) $$


neutral pion decay

  • $\pi^0 \to \gamma \gamma$


encyclopedia


related items


expositions

articles

  • Alekseev, Anton, and Thomas Strobl. “Current Algebras and Differential Geometry.” Journal of High Energy Physics 2005, no. 03 (March 15, 2005): 035–035. doi:10.1088/1126-6708/2005/03/035.
  • Sommerfield, Charles M. ‘Currents as Dynamical Variables’. Physical Review 176, no. 5 (25 December 1968): 2019–25. doi:10.1103/PhysRev.176.2019.
  • Sugawara, Hirotaka. ‘A Field Theory of Currents’. Physical Review 170, no. 5 (25 June 1968): 1659–62. doi:10.1103/PhysRev.170.1659.