Representations of symmetrizable Kac-Moody algebras

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 16일 (월) 09:57 판
둘러보기로 가기 검색하러 가기

introduction

  • Let $L(A)$ be a symmetrizable Kac-Moody algebra
  • the category \(\mathcal{O}\)
  • Integrable modules


the category $\mathcal{O}$

  • $V$ is an object in $\mathcal{O}$
  1. $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$
  2. $\dim V_{\lambda}$ is finite for each $\lambda\in \mathfrak{h}^{*}$
  3. there exists a finite set $\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}$ such that each $\lambda$ with $V_{\lambda}\neq 0$ satisfies $\lambda \prec \lambda_i$ for some $i\in \{1,\cdots, s\}$


integrable module

  • An $L(A)$-module $V$ is called integrable if

$$ V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda} $$ and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i$

Thm

Let $L(A)$ be a symmetrizable Kac-Moody algebra and $L(\lambda)$ be an irreducible $L(A)$-module in the category $\mathcal{O}$. Then $L(\lambda)$ is integrable if and only if $\lambda$ is dominant and integral.


related items