Zamolodchikov's c-theorem
correlation functions
- \(\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}\)
- \(\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}\)
- \(\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}\)
C-function
- \(C=2F-G-\frac{3}{8}H\)
UV-limit
\[ c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle \]
expositions
articles
- Becker, Daniel, and Martin Reuter. “Towards a \(C\)-Function in 4D Quantum Gravity.” arXiv:1412.0468 [hep-Th], December 1, 2014. http://arxiv.org/abs/1412.0468.
encyclopedia
메타데이터
위키데이터
- ID : Q5005965