카소라티안 (Casoratian)

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 06:00 판 (→‎메타데이터: 새 문단)
둘러보기로 가기 검색하러 가기

개요


정의

두 개의 수열

  • 두 수열 \(y_1,y_2\)에 대하여, 카소라티안은 다음의 행렬식으로 주어진다

\[ \begin{vmatrix} y_1(n) & y_1(n+1) \\ y_2(n) & y_2(n+1) \end{vmatrix} \]


세 개의 수열

  • 세 수열 \(y_1,y_2,y_3\)에 대하여, 카소라티안은 다음의 행렬식으로 주어진다

\[ \begin{vmatrix} y_1(n) & y_1(n+1) & y_1(n+2) \\ y_2(n) & y_2(n+1) & y_2(n+2) \\ y_3(n) & y_3(n+1) & y_3(n+2) \end{vmatrix} \]


  • 다음의 선형점화식을 생각하자

\[a_n-4 a_{n-1}+6 a_{n-2}-4 a_{n-3}+a_{n-4}=0\label{eq}\]

  • 네 수열 \(\{1\}_{n=0}^{\infty},\{n\}_{n=0}^{\infty},\{n^2\}_{n=0}^{\infty},\{n^3\}_{n=0}^{\infty}\)은, \ref{eq}의 해이다
  • 카소라티안은

\[ \begin{vmatrix} 1 & 1 & 1 & 1 \\ n & n+1 & n+2 & n+3 \\ n^2 & (n+1)^2 & (n+2)^2 & (n+3)^2 \\ n^3 & (n+1)^3 & (n+2)^3 & (n+3)^3 \end{vmatrix} =12 \] 이므로, 이들은 \ref{eq}의 선형독립인 해가 된다

관련된 항목들


매스매티카 파일 및 계산 리소스


수학용어번역


사전 형태의 자료

메타데이터

위키데이터