Calogero-Moser system
노트
말뭉치
- Calogero–Moser system with elliptic potentials are studied.[1]
- The goal of the present lecture notes is to give an introduction to the theory of Calogero–Moser systems, highlighting their interplay with these fields.[2]
- The proposed project lies in the areas of integrable systems, and more specifically Calogero-Moser systems, Cherednik algebras and the theory of Frobenius manifolds.[3]
- This will also give a unified approach to the integrability of generalised Calogero-Moser systems.[3]
- We also present two important classes of new examples, a family of hyperbolic spin Calogero-Moser systems and the spin Toda lattices.[4]
- If G is a real reflection group, these families reduce to the known generalizations of elliptic Calogero–Moser systems, but in the non-real case they appear to be new.[5]
소스
- ↑ Difference Calogero–Moser systems and finite Toda chains
- ↑ European Mathematical Society Publishing House
- ↑ 3.0 3.1 Calogero-Moser systems, Cherednik algebras and Frobenius structures
- ↑ A family of hyperbolic spin Calogero-Moser systems and the spin Toda lattices
- ↑ On elliptic Calogero–Moser systems for complex crystallographic reflection groups
메타데이터
Spacy 패턴 목록
- [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}]
노트
말뭉치
- The proposed project lies in the areas of integrable systems, and more specifically Calogero-Moser systems, Cherednik algebras and the theory of Frobenius manifolds.[1]
- This will also give a unified approach to the integrability of generalised Calogero-Moser systems.[1]
- Lie algebra coupled to the Calogero-Moser system of n interacting particles on the real line.[2]
- Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Delta.[3]
- The associated integrable models (called integrable spin Calogero-Moser systems in the paper) and their Lax pairs are then obtained via Poisson reduction and gauge transformations.[4]
소스
- ↑ 1.0 1.1 Calogero-Moser systems, Cherednik algebras and Frobenius structures
- ↑ An integrable marriage of the Euler equations with the Calogero-Moser system
- ↑ Quantum versus classical integrability in Calogero-Moser systems
- ↑ [PDF A Class of Integrable Spin Calogero-Moser Systems]
메타데이터
Spacy 패턴 목록
- [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}]