Basic hypergeometric series
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 01:28 판
theory
- 오일러의 오각수정리(pentagonal number theorem)\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\)
 - 오일러공식\(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
 
 
 
q-Pochhammer
- partition generating function
 
- Series[1/QPochhammer[q, q], {q, 0, 100}]
 
- Dedekind eta
 
- Series[QPochhammer[q, q], {q, 0, 100}]
 
 
 
q-hypergeometric series
\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)
 
- f[q_] := QHypergeometricPFQ[{}, {}, q, -q^(1/2)] g[q_] := Exp[-(Pi^2/(12 Log[q])) + Log[q]/48] Table[N[f[1 - 1/10^(i)]/g[1 - 1/10^(i)], 50], {i, 1, 5}] // TableForm
 
 
 
KdV Hirota polynomials
- Series[1/QPochhammer[q, q^2] - 1/QPochhammer[q^2, q^4], {q, 0, 100}]
 - KdV equation
 
 
 
- asymptotic analysis of basic hypergeometric series
 - hypergeometric functions and representation theory
 - Bailey pair and lemma
 - Bailey lattice
 - sources of Bailey pairs
 - determinantal identities and Airy kernel
 - elliptic hypergeometric series
 - finitized q-series identity
 - integer partitions
 - q-analogue of summation formulas
 - Slater list
 - Slater 31
 - Slater 32
 - Slater 34
 - Slater 36
 - Slater 37
 - Slater 47
 - Slater 83
 - Slater 86
 - Slater 92
 - Slater 98
 - useful techniques in q-series
 
memo
 
computational resource
메타데이터
위키데이터
- ID : Q1062958
 
Spacy 패턴 목록
- [{'LOWER': 'basic'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]
 - [{'LOWER': 'q'}, {'OP': '*'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]