대칭다항식

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 12:14 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소==    

개요

  • n 변수의 다항식 \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 의 모든 permutation에 의해서 불변일 때, 대칭다항식이라 한다 ( 대칭군 (symmetric group) )
  • 다항식 \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 중에서 두 변수를 바꾸는 permutation 즉 transposition 에 의해 부호가 바뀔 때, 이를 교대다항식이라 한다

 

 

대칭다항식의 예

  • 세 변수의 경우
  • \(x_1+x_2+x_3\)
  • \(x_1 x_2+x_1 x_3+x_2 x_3\)
  • \(x_1 x_2 x_3\)

 

 

well-known bases

  • algebraic independence result (Ruffini, around 1800)
  • power sums
    • A. Girard
    • Waring

 

 

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역==      

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

  • J. Dieudonné, Schur functions and group representations , Young tableaux and Schur functors in algebra and geometry, Astéerisque, 87--88 , 7--19 (1981)

 

 

관련논문

 

 

관련도서