라마누잔의 class invariants
http://bomber0.myid.net/ (토론)님의 2009년 8월 14일 (금) 10:09 판
\(g_n:=(\frac{k'(i\sqrt{n})^2}{2k(i\sqrt{n})})^{1/12}\)
\(g_{58}^2=\frac{\sqrt{29}+5}{2}\)
정의
\(q=e^{2\pi i \tau}\)
\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)
\(\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}\)
\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)
\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
하위주제들
재미있는 사실
관련된 다른 주제들
관련도서 및 추천도서
- Ramanujan's Notebooks: V
- Bruce C. Berndt
- 도서내검색
- 도서검색
참고할만한 자료
- Ramanujan's Most Singular Modulus
- Mark B. Villarino, Arxiv, 2003-8
- Ramanujan’s class invariants and cubic continued fraction
- BC Berndt, HH Chan, LC Zhang, ACTA ARITHMETICA LXXIII.1 (1995)
- Ramanujan's class invariants, Kronecker's limit formula, and modular equations
- BC Berndt, HH Chan, LC Zhang, Transactions of the American Mathematical Society, 1997
- RAMANUJAN–WEBER CLASS INVARIANT Gn AND WATSON'S EMPIRICAL PROCESS
- HH Chan, Journal of the London Mathematical Society, 1998
- Ramanujan and the modular j-invariant
- BC Berndt, HH Chan, Canadian Mathematical Bulletin, 1999
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://scholar.google.com/scholar?q=ramanujan%27s+class+invariants&hl=ko&lr=&start=10&sa=N
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=