무리수와 초월수

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 6월 16일 (화) 16:19 판
둘러보기로 가기 검색하러 가기
간단한 소개

먼저 대수

 

 

린데만-바이어슈트라스 정리

 

겔퐁드-슈나이더 정리
If α and β are algebraic numbers (with α≠0 and \(\log \alpha\) any non-zero logarithm of α), and if β is not a rational number, then any value of \(\alpha^{\beta} = \exp\{\beta \log \alpha\}\) is a transcendental number. ===Comments=== * The values of \(\alpha\) and \(\beta\) are not restricted to real numbers; all complex numbers are allowed. * In general, \(\alpha^{\beta} = \exp\{\beta \log \alpha\}\) is multivalued, where "log" stands for the complex logarithm. This accounts for the phrase "any value of" in the theorem's statement. * An equivalent formulation of the theorem is the following: if \(\alpha\) and \(\gamma\) are nonzero algebraic numbers, and we take any non-zero logarithm of α, then \((\log \gamma)/(\log \alpha)\) is either rational or transcendental. * If the restriction that \(\beta\) be algebraic is removed, the statement does not remain true in general (choose \(\alpha=3\) and \(\beta=\log 2/\log 3\), which is transcendental, then \(\alpha^{\beta}=2\) is algebraic). A characterization of the values for α and β which yield a transcendental αβ is not known.

 

 

베이커의 정리

 

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 


 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상