경로 적분 (contour integral)
(경로적분(contour integral)에서 넘어옴)
둘러보기로 가기
검색하러 가기
개요
- 경로 (1차원 곡선) 을 따라 복소함수를 적분할 수 있다
- 실변수함수의 선적분 개념을 이용하여 정의된다
- C1 곡선인 \(\gamma\) 가 복소평면 상에서 \(r(t)=x(t)+ i y(t)\) , \(a\leq t \leq b\) 로 매개화되는 경우, \(\oint _{\gamma }f dz\) 는 다음과 같이 정의된다
\[\oint _{\gamma }f dz = \int_a^b f (x(t)+i y(t)) \left(x'(t)+i y'(t)\right) \, dt\]
관련된 항목들