"바이어슈트라스 치환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 스프링노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소== |
5번째 줄: | 5번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요== |
* <math>R(x,y)</math>는 <math>x,y</math>의 유리함수라고 가정<br> | * <math>R(x,y)</math>는 <math>x,y</math>의 유리함수라고 가정<br> | ||
14번째 줄: | 14번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">바이어슈트라스 치환 | + | <h5 style="margin: 0px; line-height: 2em;">바이어슈트라스 치환== |
* 다음과 같은 치환적분을 사용 (이를 [[바이어슈트라스 치환]] 이라 한다)<br><math>t=\tan \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1+t^2}</math>, <math>\sin x=\frac{2t}{1+t^2}</math>, <math>\cos x=\frac{1-t^2}{1+t^2}</math><br><math>\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt</math><br> | * 다음과 같은 치환적분을 사용 (이를 [[바이어슈트라스 치환]] 이라 한다)<br><math>t=\tan \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1+t^2}</math>, <math>\sin x=\frac{2t}{1+t^2}</math>, <math>\cos x=\frac{1-t^2}{1+t^2}</math><br><math>\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt</math><br> | ||
22번째 줄: | 22번째 줄: | ||
− | ==쌍곡함수의 바이어슈트라스 치환 | + | ==쌍곡함수의 바이어슈트라스 치환== |
* <math>R(\cosh x, \sinh x)</math>의 적분에 응용할 수 있다<br> | * <math>R(\cosh x, \sinh x)</math>의 적분에 응용할 수 있다<br> | ||
34번째 줄: | 34번째 줄: | ||
− | ==예 | + | ==예== |
42번째 줄: | 42번째 줄: | ||
− | ==재미있는 사실 | + | ==재미있는 사실== |
53번째 줄: | 53번째 줄: | ||
− | ==역사 | + | ==역사== |
65번째 줄: | 65번째 줄: | ||
− | ==메모 | + | ==메모== |
71번째 줄: | 71번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
77번째 줄: | 77번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
90번째 줄: | 90번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
100번째 줄: | 100번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
110번째 줄: | 110번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
124번째 줄: | 124번째 줄: | ||
− | ==블로그 | + | ==블로그== |
* http://mathnow.wordpress.com/2009/11/13/the-weierstrass-substitution/ | * http://mathnow.wordpress.com/2009/11/13/the-weierstrass-substitution/ |
2012년 11월 1일 (목) 13:49 판
이 항목의 스프링노트 원문주소==
개요==
- \(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
- \(R(\cos x, \sin x)\)의 적분을 유리함수의 적분으로 바꾸기 위해 바이어슈트라스 치환을 사용한다
\(t=\tan \frac{x}{2}\)
바이어슈트라스 치환==
- 다음과 같은 치환적분을 사용 (이를 바이어슈트라스 치환 이라 한다)
\(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
\(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)
쌍곡함수의 바이어슈트라스 치환
- \(R(\cosh x, \sinh x)\)의 적분에 응용할 수 있다
- 다음과 같은 치환적분을 사용
\(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
\(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)
예
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역==
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- [1]http://en.wikipedia.org/wiki/Tangent_half-angle_formula
- http://planetmath.org/encyclopedia/WeierstrassSubstitutionFormulas.html[2]
관련논문
관련도서
- 도서내검색
- 도서검색
블로그
- \(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
- \(R(\cos x, \sin x)\)의 적분을 유리함수의 적분으로 바꾸기 위해 바이어슈트라스 치환을 사용한다
\(t=\tan \frac{x}{2}\)
- 다음과 같은 치환적분을 사용 (이를 바이어슈트라스 치환 이라 한다)
\(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
\(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)
\(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
\(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- [1]http://en.wikipedia.org/wiki/Tangent_half-angle_formula
- http://planetmath.org/encyclopedia/WeierstrassSubstitutionFormulas.html[2]
관련논문
관련도서
- 도서내검색
- 도서검색