"베버(Weber) 모듈라 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
101번째 줄: 101번째 줄:
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]] 의 공식<br><math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br><math>z=q^{1/2}</math> 인 경우<br><math>\prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} (q^{1/2})^n=\sum_{n\geq 0}\frac{q^{n^2/2}}{(1-q)(1-q^2)\cdots(1-q^n)} </math><br><math>\prod_{n=1}^{\infty} (1+q^{2n-1})=\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})} </math><br><math>z=q</math> 인 경우<br><math>\prod_{n=1}^{\infty} (1+q^{n})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}q^n=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}</math><br>
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]] 의 공식<br><math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br><math>z=q^{1/2}</math> 인 경우<br><math>\prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} (q^{1/2})^n=\sum_{n\geq 0}\frac{q^{n^2/2}}{(1-q)(1-q^2)\cdots(1-q^n)} </math><br><math>\prod_{n=1}^{\infty} (1+q^{2n-1})=\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})} </math><br><math>z=q</math> 인 경우<br><math>\prod_{n=1}^{\infty} (1+q^{n})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}q^n=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}</math><br>
 
*  위의 결과로부터 다음을 얻을 수 있다<br><math>\mathfrak{f}(2\tau)=q^{-1/24}\prod_{n=1}^{\infty} (1+q^{2n-1})=q^{-1/24}\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}</math><br><math>\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}</math><br>
 
*  위의 결과로부터 다음을 얻을 수 있다<br><math>\mathfrak{f}(2\tau)=q^{-1/24}\prod_{n=1}^{\infty} (1+q^{2n-1})=q^{-1/24}\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}</math><br><math>\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}</math><br>
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 
 
 
 
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 
189번째 줄: 179번째 줄:
 
** [http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;cc=math;view=toc;subview=short;idno=webe034 Lehrbuch der Algebra (Volume 3)] (1898). [http://astech.library.cornell.edu/ast/math/additional/Digital-Books.cfm available in print]
 
** [http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;cc=math;view=toc;subview=short;idno=webe034 Lehrbuch der Algebra (Volume 3)] (1898). [http://astech.library.cornell.edu/ast/math/additional/Digital-Books.cfm available in print]
 
** [http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;cc=math;view=toc;subview=short;idno=02910001 Theorie der Abelschen Functionen vom Geschlecht 3] (1876). [http://www.amazon.com/dp/1429704683?tag=corneunivelib-20 available in print]
 
** [http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;cc=math;view=toc;subview=short;idno=02910001 Theorie der Abelschen Functionen vom Geschlecht 3] (1876). [http://www.amazon.com/dp/1429704683?tag=corneunivelib-20 available in print]
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 

2012년 7월 19일 (목) 15:10 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 베버의 class invariant 라는 이름으로 잘 알려져 있으며, 베버는 Schläfli 함수로 불렀음
  • class field theory에서 중요한 역할

 

 

정의

\(\mathfrak{f}(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)

\(\mathfrak{f}_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)

\(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)

 

\(\gamma_2(\tau)=\frac{\mathfrak{f}(\tau)^{24}-16}{\mathfrak{f}(\tau)^8}=\sqrt[3]{j(\tau)}\)

\(\gamma_3(\tau)= \frac{(\mathfrak{f}(z)^{24} + 8) (\mathfrak{f}_1(z)^8 - \mathfrak{f}_2(z)^8)}{\mathfrak{f}(z)^8}=\sqrt{j(\tau)-1728}\)

여기서  \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수

 

 

 

항등식
  • \(\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau)=\sqrt2\)
  • \(\mathfrak{f}(\tau)\mathfrak{f}_1(\tau)\mathfrak{f}_2(\tau)=\sqrt2\)
  • \(\mathfrak{f}(\tau)^8=\mathfrak{f}_1(\tau)^8+\mathfrak{f}_2(\tau)^8\)

 

 

모듈라 성질
  • \(\mathfrak{f}(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}_1(\tau)\)
  • \(\mathfrak{f}_1(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}(\tau)\)
  • \(\mathfrak{f}_2(\tau+1)=\zeta_{24}\mathfrak{f}_2(\tau)\)
  • \(\mathfrak{f}(-\frac{1}{\tau})=\mathfrak{f}(\tau)\)
  • \(\mathfrak{f}_1(-\frac{1}{\tau})=\mathfrak{f}_2(\tau)\)
  • \(\mathfrak{f}_2(-\frac{1}{\tau})=\mathfrak{f}_1(\tau)\)

 

 

j-invariant 와의 관계

 

 

special values
  • \(\mathfrak{f}(i)^8=4\)
  • \(\mathfrak{f}_1(i)^8=2\)
  • \(\mathfrak{f}_2(i)^8=2\)
  • \(\mathfrak{f}_1(2i)^8=8\)

 

 

데데킨트 에타함수와의 관계

\(f(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)

\(f_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)

\(f_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)

여기서  \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수

 

 

 

q-초기하급수와의 관계
  • q-초기하급수(q-hypergeometric series) 의 공식
    \(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
    \(z=q^{1/2}\) 인 경우
    \(\prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} (q^{1/2})^n=\sum_{n\geq 0}\frac{q^{n^2/2}}{(1-q)(1-q^2)\cdots(1-q^n)} \)
    \(\prod_{n=1}^{\infty} (1+q^{2n-1})=\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})} \)
    \(z=q\) 인 경우
    \(\prod_{n=1}^{\infty} (1+q^{n})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}q^n=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)
  • 위의 결과로부터 다음을 얻을 수 있다
    \(\mathfrak{f}(2\tau)=q^{-1/24}\prod_{n=1}^{\infty} (1+q^{2n-1})=q^{-1/24}\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}\)
    \(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서