"사이클로이드"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
43번째 줄: 43번째 줄:
  
 
[/pages/4402517/attachments/2339127 figure3.gif]
 
[/pages/4402517/attachments/2339127 figure3.gif]
 +
 +
* http://books.google.com/books?id=dptKVr-5LJAC&pg=PA223&sig=PVA7Q1U_MyXinobyhOf54BwjShQ&hl=en#v=onepage&q&f=false
 +
 +
곡선의 시작점을 <math>x(0)=y(0)=0 이니까</math>,
 +
 +
곡선을 따라 내려올때 걸리는 시간은 다음과 같이 구할 수 있다.
 +
 +
<math>t=\int \frac{1}{v} \, ds</math>(v는 속력, ds 는 길이요소, t는 시간)
 +
 +
에너지 보존 법칙 <math>mgy=\frac{1}{2}mv^2</math>  에서<math>v=\sqrt{2gy}</math>.
 +
 +
이제 곡선의 x좌표를 y의 함수로 생각하자. 곡선을 따라 내려올 때 걸리는 시간은
 +
 +
<math>T=\int \frac{1}{v} \, ds=\frac{1}{\sqrt{2g}}\int_{0}^{y} \frac{\sqrt{1+x'(y)^2}}{\sqrt{y}} \, dy</math>
 +
 +
문제의 정의에 따라 이 적분값을 최소가 되게 하는 곡선을 찾아야 한다.
 +
 +
<math>F(y,x,x')=\frac{\sqrt{1+(x')^2}}{\sqrt{y}}</math> 에 대하여 [[오일러-라그랑지 방정식]] 을 적용하면,
 +
 +
<math>0 =\frac{\partial F}{\partial x} - \frac{d}{dy} \frac{\partial F}{\partial x'}=-\frac{d}{dy}(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}})</math>
 +
 +
적당한 상수 a에 대하여 <math>\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}}=\frac{1}{\sqrt{2a}}</math>라 두자.
 +
 +
이를 풀면 <math>\frac{dx}{dy}=\sqrt{{\frac{y}{2a-y}}</math> 를 얻는다.
 +
 +
 <math>x=\int_{0}^{y}\sqrt{\frac{y}{2a-y}}dy</math>
 +
 +
<math>y=2a\sin^2\frac{\theta}{2}=a(1-\cos\theta)</math>로 치환하면, <math>x=a(\theta-\sin\theta)</math>를 얻는다.
 +
 +
따라서 사이클로이드를 얻는다.
 +
 +
 
 +
 +
 
  
 
 
 
 
70번째 줄: 104번째 줄:
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=cycloid
 
* 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] 사이클로이드 아래의 면적이 기본원 면적의 세 배임을 증명
 
* 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] 사이클로이드 아래의 면적이 기본원 면적의 세 배임을 증명
 
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] 사이클로이드의 길이가 기본원 지름의 네 배임을 증명
 
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] 사이클로이드의 길이가 기본원 지름의 네 배임을 증명
85번째 줄: 120번째 줄:
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5>
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5>
  
* Brachistochrone curve
+
* Brachistochrone curve<br>
* brachistos - the shortest, chronos - time
+
** brachistos - the shortest, chronos - time
* 최단시간강하 곡선
+
** 최단시간강하 곡선
* Tautochrone problem
+
* Tautochrone problem<br>
* 등시강하곡선 문제
+
** 등시강하곡선 문제
 
* [http://www.google.com/dictionary?langpair=en%7Cko&q=Brachistochrone http://www.google.com/dictionary?langpair=en|ko&q=Brachistochrone]
 
* [http://www.google.com/dictionary?langpair=en%7Cko&q=Brachistochrone http://www.google.com/dictionary?langpair=en|ko&q=Brachistochrone]
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
122번째 줄: 157번째 줄:
  
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5>
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5>
 +
 +
* [http://books.google.com/books?id=dptKVr-5LJAC Classical Mechanics]<br>
 +
** Rana & Joag
 +
** chapter 7
  
 
*  도서내검색<br>
 
*  도서내검색<br>

2010년 9월 27일 (월) 19:47 판

이 항목의 스프링노트 원문주소
  • 사이클로이드

 

 

개요
  • 직선을 따라서 원을 굴릴때, 원 위의 한 점이 그리는 궤적을 사이클로이드라 함
  • 원점에서 출발하여 반지름이 \(r\)인 원을 통해서 얻어지는 사이클로이드의 방정식

\(x = r(t - \sin t)\)

\(y = r(1 - \cos t)\)

  • 등시성 문제와 최단시간강하곡선 문제의 답이다

 

[/pages/4402517/attachments/2339125 cycloid.gif]

 

 

등시강하곡선 문제 (Tautochrone problem)
  • 중력을 받고 있는 물체가 출발점에 관계없이 주어진 목적지에 똑같은 시간에 도달하기 위해서 따라야 하는 곡선
  • 1659년 호이겐스에 의해 해결

[/pages/4402517/attachments/2339131 Tautochrone_curve(1).gif]

 

 

최단시간강하곡선 문제(Brachistochrone problem)
  •  중력을 받고 있는 물체가 정지상태에서 출발하여 가장 짧은 시간내에 하강하기 위해서 따라야 하는 곡선
  • 1697년에 베르누이에 의하여 답이 출판

[/pages/4402517/attachments/2339127 figure3.gif]

곡선의 시작점을 \(x(0)=y(0)=0 이니까\),

곡선을 따라 내려올때 걸리는 시간은 다음과 같이 구할 수 있다.

\(t=\int \frac{1}{v} \, ds\)(v는 속력, ds 는 길이요소, t는 시간)

에너지 보존 법칙 \(mgy=\frac{1}{2}mv^2\)  에서\(v=\sqrt{2gy}\).

이제 곡선의 x좌표를 y의 함수로 생각하자. 곡선을 따라 내려올 때 걸리는 시간은

\(T=\int \frac{1}{v} \, ds=\frac{1}{\sqrt{2g}}\int_{0}^{y} \frac{\sqrt{1+x'(y)^2}}{\sqrt{y}} \, dy\)

문제의 정의에 따라 이 적분값을 최소가 되게 하는 곡선을 찾아야 한다.

\(F(y,x,x')=\frac{\sqrt{1+(x')^2}}{\sqrt{y}}\) 에 대하여 오일러-라그랑지 방정식 을 적용하면,

\(0 =\frac{\partial F}{\partial x} - \frac{d}{dy} \frac{\partial F}{\partial x'}=-\frac{d}{dy}(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}})\)

적당한 상수 a에 대하여 \(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}}=\frac{1}{\sqrt{2a}}\)라 두자.

이를 풀면 \(\frac{dx}{dy}=\sqrt{{\frac{y}{2a-y}}\) 를 얻는다.

 \(x=\int_{0}^{y}\sqrt{\frac{y}{2a-y}}dy\)

\(y=2a\sin^2\frac{\theta}{2}=a(1-\cos\theta)\)로 치환하면, \(x=a(\theta-\sin\theta)\)를 얻는다.

따라서 사이클로이드를 얻는다.

 

 

 

 

재미있는 사실

 

메모
  • 요한 베르누이의 생각 - 빛이 밀도가 점점 증가하는 물질의 (중력을 받고 있는...) 연속적인 층을 통과할 때 만드는 곡선

 

많이 나오는 질문

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그