"사인-고든 방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
16번째 줄: | 16번째 줄: | ||
<h5>오일러-라그랑지 방정식</h5> | <h5>오일러-라그랑지 방정식</h5> | ||
− | * 라그랑지안 <math>\mathcal{L}_\text{SG}(\ | + | * 라그랑지안 <math>\mathcal{L}_\text{SG}(\psi) = \frac{1}{2}(\psi_t^2 - \psi_x^2) -1 + \cos\psi</math> 에 대하여 [[오일러-라그랑지 방정식]] 을 적용<br><math>\partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \psi )} \right) - \frac{\partial \mathcal{L}}{\partial \psi} = 0</math><br> |
− | |||
− | |||
2012년 1월 11일 (수) 14:30 판
이 항목의 수학노트 원문주소
개요
- 사인-고든 방정식
\(u_{tt}-u_{xx}+\sin u=0\) - 양자장론에 등장하는 클라인-고든 방정식에서 이름이 붙음
\((\Box + m^2) \psi =\psi_{tt}-\psi_{xx}+m^2\psi=0\)
오일러-라그랑지 방정식
- 라그랑지안 \(\mathcal{L}_\text{SG}(\psi) = \frac{1}{2}(\psi_t^2 - \psi_x^2) -1 + \cos\psi\) 에 대하여 오일러-라그랑지 방정식 을 적용
\(\partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \psi )} \right) - \frac{\partial \mathcal{L}}{\partial \psi} = 0\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문