"삼각치환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5>
  
 +
<math>R(x,y)</math>는 <math>x,y</math>의 유리함수라고 가정
 +
 +
 
 +
 +
<math>R(\cos x, \sin x)</math>의 적분
 +
 +
*  다음과 같은 치환적분을 사용<br><math>t=\tan \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1+t^2}</math>, <math>\sin x=\frac{2t}{1+t^2}</math>, <math>\cos x=\frac{1-t^2}{1+t^2}</math><br><math>\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt</math><br>
 +
 +
 
 +
 +
<math>R(\cosh x, \sinh x)</math>의 적분
 +
 +
*   <br> 다음과 같은 치환적분을 사용<br><math>t=\tanh \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1-t^2}</math>, <math>\sinh x=\frac{2t}{1-t^2}</math>, <math>\cosh x=\frac{1+t^2}{1-t^2}</math><br><math>\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt</math><br>  <br>
 +
 +
 
 +
 +
<math>R(x,\sqrt{1-x^2})</math>의 적분
 +
 +
* <math>x=\cos u</math> 치환을 사용하면, <math>R'(\cos x, \sin x)</math> 의 적분으로 변화
 +
 +
 
 +
 +
<math>R(x,\sqrt{x^2-1})</math>의 적분
 +
 +
* <math>x=\cosh u</math> 치환을 사용하면, <math>R'(\cosh x, \sinh x)</math>의 적분으로 변화
 +
 +
 
 +
 +
<math>R(x,\sqrt{x^2+1})</math>의 적분
 +
 +
* <math>x=\sinh u</math> 치환을 사용하면, <math>R'(\cosh x, \sinh x)</math>의 적분으로 변화
 +
 +
 
 +
 +
<math>R(x,\sqrt{ax^2+bx+c})</math>의 적분
 +
 +
* <math>ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}</math> 으로 쓴 다음
 +
* <math>ac-b^2</math>와 <math>a</math>의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
 +
 +
* [[수학사연표 (역사)|수학사연표]]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5>
 +
 +
<br>
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 +
 +
*  도서내검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/contentSearch.do?query=
 +
*  도서검색<br>
 +
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
 +
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5>
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.wolframalpha.com/input/?i=
 +
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 +
 +
*  네이버 뉴스 검색 (키워드 수정)<br>
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
 +
 +
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 +
* 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query=<br>
 +
 +
<br>

2009년 8월 22일 (토) 11:02 판

간단한 소개

\(R(x,y)\)는 \(x,y\)의 유리함수라고 가정

 

\(R(\cos x, \sin x)\)의 적분

  • 다음과 같은 치환적분을 사용
    \(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
    \(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)

 

\(R(\cosh x, \sinh x)\)의 적분

  •  
    다음과 같은 치환적분을 사용
    \(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
    \(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)
     

 

\(R(x,\sqrt{1-x^2})\)의 적분

  • \(x=\cos u\) 치환을 사용하면, \(R'(\cos x, \sin x)\) 의 적분으로 변화

 

\(R(x,\sqrt{x^2-1})\)의 적분

  • \(x=\cosh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화

 

\(R(x,\sqrt{x^2+1})\)의 적분

  • \(x=\sinh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화

 

\(R(x,\sqrt{ax^2+bx+c})\)의 적분

  • \(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음
  • \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들


관련도서 및 추천도서

 

 

수학용어번역

 

참고할만한 자료

 

 

관련기사

 

 

블로그