"삼각치환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
+ | |||
+ | * [[삼각치환]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
<math>R(x,\sqrt{1-x^2})</math>의 적분 | <math>R(x,\sqrt{1-x^2})</math>의 적분 | ||
23번째 줄: | 29번째 줄: | ||
* <math>ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}</math> 으로 쓴 다음 | * <math>ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}</math> 으로 쓴 다음 | ||
* <math>ac-b^2</math>와 <math>a</math>의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝. | * <math>ac-b^2</math>와 <math>a</math>의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝. | ||
+ | * [[#]] | ||
49번째 줄: | 56번째 줄: | ||
<math>R(\cosh x, \sinh x)</math>의 적분 | <math>R(\cosh x, \sinh x)</math>의 적분 | ||
− | * 다음과 같은 치환적분을 사용<br><math>t=\tanh \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1-t^2}</math>, <math>\sinh x=\frac{2t}{1-t^2}</math>, <math>\cosh x=\frac{1+t^2}{1-t^2}</math><br><math>\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt</math | + | * 다음과 같은 치환적분을 사용<br><math>t=\tanh \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1-t^2}</math>, <math>\sinh x=\frac{2t}{1-t^2}</math>, <math>\cosh x=\frac{1+t^2}{1-t^2}</math><br><math>\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt</math><br> |
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5> |
59번째 줄: | 66번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
67번째 줄: | 74번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5> |
− | + | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
84번째 줄: | 91번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> |
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid= | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">참고할만한 자료</h5> |
* [http://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://ko.wikipedia.org/wiki/삼각치환] | * [http://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://ko.wikipedia.org/wiki/삼각치환] | ||
103번째 줄: | 110번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
114번째 줄: | 121번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
− | * 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query= | + | * 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query= |
− | |||
− |
2010년 2월 9일 (화) 19:08 판
이 항목의 스프링노트 원문주소
개요
\(R(x,\sqrt{1-x^2})\)의 적분
- \(x=\cos u\) 치환을 사용하면, \(R'(\cos x, \sin x)\) 의 적분으로 변화
\(R(x,\sqrt{x^2-1})\)의 적분
- \(x=\cosh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
\(R(x,\sqrt{x^2+1})\)의 적분
- \(x=\sinh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
\(R(x,\sqrt{ax^2+bx+c})\)의 적분
- \(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음
- \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.
- #
삼각치환의 이론적 근거
- 유리함수의 부정적분은 초등함수로 쓸수 있기 때문에 삼각치환이 잘 작동한다고 볼 수 있다
- 삼각치환들이 잘 되는 이유는 '이차곡선은 유리함수로 매개화 가능' 하기 때문이다.
즉, \(y^2=ax^2+bx+c\) 라는 곡선을, 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\) 형태로 매개화할 수 있기 때문이다. - 삼각함수와 쌍곡함수들은 이차곡선을 매개화한다
\(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
\(R(\cos x, \sin x)\)의 적분
- 다음과 같은 치환적분을 사용
\(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
\(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)
\(R(\cosh x, \sinh x)\)의 적분
- 다음과 같은 치환적분을 사용
\(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
\(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)
재미있는 사실
역사
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
수학용어번역
참고할만한 자료
- http://ko.wikipedia.org/wiki/삼각치환
- http://en.wikipedia.org/wiki/trigonometric
- http://www.wolframalpha.com/input/?i=
- 네이버 오늘의과학
관련기사
- 네이버 뉴스 검색 (키워드 수정)