"5차방정식과 근의 공식"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 이름을 5차방정식과 근의 공식로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | * [[5차방정식과 근의 공식]] | ||
6번째 줄: | 8번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
+ | |||
+ | |||
13번째 줄: | 17번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">증명의 개요</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">증명의 개요</h5> | ||
− | * | + | * 증명은 크게 두 부분으로 구성<br> |
− | * | + | ** 5차 방정식의 해를 거듭제곱근기호를 써서 나타낼 때의 일반적인 표현<br> |
− | * | + | ** 거듭제곱근의 기호를 써서 표현할 때 등장하는 수들은 방정식의 해의 유리함수로 표현가능<br> |
− | * | ||
− | * | ||
24번째 줄: | 26번째 줄: | ||
+ | |||
+ | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">거듭제곱근 체확장</h5> | ||
+ | |||
+ | * 기본체 <math>F=R_0</math><br> | ||
+ | * 적당한 원소 <math>a_0 \in F</math>와 소수 <math>n_0</math>에 대하여, 거듭제곱근 <math>\sqrt[n_0]a</math> 를 넣어 얻어지는 체확장 <math>R_1=R_0(\sqrt[n_0]a_0)</math><br> | ||
+ | * 적당한 원소 <math>a_1\in R_1</math>와 소수 <math>n_1</math>에 대하여, 거듭제곱근 <math>\sqrt[n_1]a_1</math> 를 넣어 얻어지는 체확장 <math>R_2=R_1(\sqrt[n_1]a_1)</math><br> | ||
+ | * 이러한 체확장을 유한번 반복하여 얻어지는 <math>F=R_0</math>의 체확장 <math>R</math> 을 거듭제곱근 체확장이라 하며, 이 반복의 회수를 체확장의 높이라 하자.<br> | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | + | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">증명</h5> | |
− | 정리 0. | + | '''정리 0.''' |
− | + | 소수 p 에 대하여 <math>F</math>의 거듭제곱근 체확장 <math>R=F(\sqrt[p]a)</math> 이 있다고 하자. | |
원소 <math>v\in R-F</math> 에 대하여, 다음이 성립한다. | 원소 <math>v\in R-F</math> 에 대하여, 다음이 성립한다. | ||
51번째 줄: | 57번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
* 방정식 <math>x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0</math>이 주어졌다고 가정하자. | * 방정식 <math>x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0</math>이 주어졌다고 가정하자. | ||
72번째 줄: | 74번째 줄: | ||
이 방정식의 한 해 v를 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 있다고 가정하자. 그러면 다음이 성립한다. | 이 방정식의 한 해 v를 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 있다고 가정하자. 그러면 다음이 성립한다. | ||
− | (1) <math>F=\mathbb{C}(s_1,s_2,\cdots,s_5)</math>의 | + | (1) <math>F=\mathbb{C}(s_1,s_2,\cdots,s_5)</math>의 적당한 거듭제곱근 체확장 <math>R</math>과 원소 <math>v_0,v_2,v_3,v_4,\rho \in R</math>이 존재하여 |
(2) <math>v=v_0+{\sqrt[5]\rho}+v_2{\sqrt[5]\rho^2}+v_3{\sqrt[5]\rho^3}+v_4{\sqrt[5]\rho^4}</math> 형태로 표현가능하다. | (2) <math>v=v_0+{\sqrt[5]\rho}+v_2{\sqrt[5]\rho^2}+v_3{\sqrt[5]\rho^3}+v_4{\sqrt[5]\rho^4}</math> 형태로 표현가능하다. | ||
147번째 줄: | 149번째 줄: | ||
정리 4. | 정리 4. | ||
− | <math>F=\mathbb{C}(s_1,s_2,\cdots,s_5) \subset R \subset K=\mathbb{C}(x_1,x_2\cdots,x_5)</math> 인 | + | <math>F=\mathbb{C}(s_1,s_2,\cdots,s_5) \subset R \subset K=\mathbb{C}(x_1,x_2\cdots,x_5)</math> 인 F의 거듭제곱근 체확장 <math>R</math>은 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이다. |
157번째 줄: | 159번째 줄: | ||
높이가 1이면, 정리0에 의하여, <math>R=F(\sqrt[p]a)</math>의 형태로 쓸 수 있다. 여기에 정리 3을 적용하면, 체확장 <math>R</math>은 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변임을 알 수 있다. | 높이가 1이면, 정리0에 의하여, <math>R=F(\sqrt[p]a)</math>의 형태로 쓸 수 있다. 여기에 정리 3을 적용하면, 체확장 <math>R</math>은 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변임을 알 수 있다. | ||
− | 이제 체확장의 높이가 2이상이면 , <math>F</math> | + | 이제 체확장의 높이가 2이상이면 , <math>F</math>의 거듭제곱근 체확장 <math>R_1</math> 이 존재하여, 적당한 소수 p 에 대하여 <math>R=R_1(\sqrt[p]u)</math> 의 형태로 쓸 수 있다. 귀납법의 가정에 의하여, 체확장 <math>R_1</math>은 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이다. <math>R=R_1(\sqrt[p]u)</math>에 정리 3을 적용하면, 체확장 <math>R</math>은 <math>\sigma=(123)</math>, <math>\tau=(345)</math>에 의해 불변이다. ■ |
169번째 줄: | 171번째 줄: | ||
방정식 <math>x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0</math>이 주어졌다고 가정하고, 그 해를 <math>x_1,x_2,\cdots,x_5</math> 라 하자. | 방정식 <math>x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0</math>이 주어졌다고 가정하고, 그 해를 <math>x_1,x_2,\cdots,x_5</math> 라 하자. | ||
− | 정리 1에 의하여, <math>F=\mathbb{C}(s_1,s_2,\cdots,s_5)</math>의 | + | 정리 1에 의하여, <math>F=\mathbb{C}(s_1,s_2,\cdots,s_5)</math>의 적당한 거듭제곱근 체확장 <math>R</math>과 원소 <math>v_0,v_2,v_3,v_4,\rho \in R</math>이 존재하여, <math>x_1=v_0+{\sqrt[5]\rho}+v_2{\sqrt[5]\rho^2}+v_3{\sqrt[5]\rho^3}+v_4{\sqrt[5]\rho^4}</math> 의 꼴로 쓸 수 있다. |
− | 한편 정리 4에 의하여, | + | 한편 정리 4에 의하여, 거듭제곱근 체확장 <math>R</math>과 원소 <math>v_0,v_2,v_3,v_4,\rho \in R</math> 는 모두 <math>\sigma,\tau</math>에 의해 불변이다. 정리 4를 한번 더 적용하면, <math>\sqrt[5]\rho</math> 도 역시 <math>\sigma,\tau</math>에 의하여 불변이다. |
− | 따라서 | + | 따라서 <math>x_1=v_0+{\sqrt[5]\rho}+v_2{\sqrt[5]\rho^2}+v_3{\sqrt[5]\rho^3}+v_4{\sqrt[5]\rho^4}</math> 의 우변은 <math>\sigma</math>에 의하여 불변이다. 그러나 <math>x_1</math>은 <math>\sigma</math>에 의하여 불변일 수 없으므로 모순이다. ■ |
− | |||
− | |||
233번째 줄: | 233번째 줄: | ||
− | <h5> | + | |
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5> | ||
+ | |||
+ | * 1820년대 아벨에 의해 증명<br> | ||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q=quintic+equation | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | |||
− | <h5>관련된 | + | <h5>관련된 항목들</h5> |
+ | |||
+ | * [[추상대수학의 토픽들]] | ||
+ | * [[5차방정식과 정이십면체|오차방정식과 정이십면체]] | ||
246번째 줄: | 254번째 줄: | ||
− | <h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5> |
+ | |||
+ | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=radical | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
− | + | ||
− | |||
2010년 1월 31일 (일) 20:47 판
이 항목의 스프링노트 원문주소
개요
증명의 개요
- 증명은 크게 두 부분으로 구성
- 5차 방정식의 해를 거듭제곱근기호를 써서 나타낼 때의 일반적인 표현
- 거듭제곱근의 기호를 써서 표현할 때 등장하는 수들은 방정식의 해의 유리함수로 표현가능
- 5차 방정식의 해를 거듭제곱근기호를 써서 나타낼 때의 일반적인 표현
거듭제곱근 체확장
- 기본체 \(F=R_0\)
- 적당한 원소 \(a_0 \in F\)와 소수 \(n_0\)에 대하여, 거듭제곱근 \(\sqrt[n_0]a\) 를 넣어 얻어지는 체확장 \(R_1=R_0(\sqrt[n_0]a_0)\)
- 적당한 원소 \(a_1\in R_1\)와 소수 \(n_1\)에 대하여, 거듭제곱근 \(\sqrt[n_1]a_1\) 를 넣어 얻어지는 체확장 \(R_2=R_1(\sqrt[n_1]a_1)\)
- 이러한 체확장을 유한번 반복하여 얻어지는 \(F=R_0\)의 체확장 \(R\) 을 거듭제곱근 체확장이라 하며, 이 반복의 회수를 체확장의 높이라 하자.
증명
정리 0.
소수 p 에 대하여 \(F\)의 거듭제곱근 체확장 \(R=F(\sqrt[p]a)\) 이 있다고 하자.
원소 \(v\in R-F\) 에 대하여, 다음이 성립한다.
(1) \(\rho \in R\) 과 \(v_0,v_1=1, v_2,v_3, \cdots, v_{p-1} \in F\)이 존재하여,
(2) \(v=v_0+{\sqrt[p]\rho}+v_2{\sqrt[p]\rho^2}+v_3{\sqrt[p]\rho^3}++\cdots+v_{p-1}{\sqrt[p]\rho^{p-1}}\) 형태로 표현가능하다.
- 방정식 \(x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0\)이 주어졌다고 가정하자.
- 그 해를 \(x_1,x_2,\cdots,x_5\) 라 하자.
- \(K=\mathbb{C}(x_1,x_2\cdots,x_5)\)
- \(F=\mathbb{C}(s_1,s_2,\cdots,s_5)\)
정리 1.
이 방정식의 한 해 v를 계수로부터 시작하여 근호와 사칙연산을 통해 표현할 수 있다고 가정하자. 그러면 다음이 성립한다.
(1) \(F=\mathbb{C}(s_1,s_2,\cdots,s_5)\)의 적당한 거듭제곱근 체확장 \(R\)과 원소 \(v_0,v_2,v_3,v_4,\rho \in R\)이 존재하여
(2) \(v=v_0+{\sqrt[5]\rho}+v_2{\sqrt[5]\rho^2}+v_3{\sqrt[5]\rho^3}+v_4{\sqrt[5]\rho^4}\) 형태로 표현가능하다.
예)
- 2차 방정식의 근의 공식
[[2차 방정식의 근의 공식|]]
\(ax^2+bx+c=0\)
\(x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\)
(증명)
정리 0을 반복해서 사용. ■
정리 2. (theorem of natural irrationalities)
\(v_0,v_2,v_3,v_4,\rho\) 는 방정식의 해 \(x_1,x_2,\cdots,x_5\) 의 유리함수로 표현할 수 있다.
예)
- 2차 방정식의 근의 공식
[[2차 방정식의 근의 공식|]]
\(ax^2+bx+c=0\) 의 해를 \(x_1,x_2\)라 하면, \(\sqrt{b^2-4ac}=x_1-x_2\) 이다.
- 3차, 4차 방정식의 근의 공식
정리 3.
\(n\geq 5\) 라 하자. \(K=\mathbb{C}(x_1,x_2\cdots,x_n)\)의 원소 \(u,a\)가 \(u^p= a\) 를 만족시킨다고 하자. a가 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이면. u도 역시 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다.
(증명)
\(\chi\) 를 u에 의해 정의되는 character 라 하자.
\(\sigma(u)=\chi(\sigma)u\)
\(\tau(u)=\chi(\tau)u\)
\(\tau\sigma=(12453)\)
\(\tau\sigma^2=(14532)\)
이므로 \(\chi(\sigma)=1\), \(\chi(\tau)=1\)이다. ■
노트. 여기가 \(n\geq 5\) 조건이 필요한 부분이다.
정리 4.
\(F=\mathbb{C}(s_1,s_2,\cdots,s_5) \subset R \subset K=\mathbb{C}(x_1,x_2\cdots,x_5)\) 인 F의 거듭제곱근 체확장 \(R\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다.
(증명)
체확장의 높이에 따른 귀납법을 사용하자.
높이가 1이면, 정리0에 의하여, \(R=F(\sqrt[p]a)\)의 형태로 쓸 수 있다. 여기에 정리 3을 적용하면, 체확장 \(R\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변임을 알 수 있다.
이제 체확장의 높이가 2이상이면 , \(F\)의 거듭제곱근 체확장 \(R_1\) 이 존재하여, 적당한 소수 p 에 대하여 \(R=R_1(\sqrt[p]u)\) 의 형태로 쓸 수 있다. 귀납법의 가정에 의하여, 체확장 \(R_1\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다. \(R=R_1(\sqrt[p]u)\)에 정리 3을 적용하면, 체확장 \(R\)은 \(\sigma=(123)\), \(\tau=(345)\)에 의해 불변이다. ■
정리 5. (5차방정식의 근의 공식의 불가능성)
(증명)
방정식 \(x^5 - s_{1} x^{4} + s_{2} x^{3} -s_{3}x^{2}+s_{4} x - s_5= 0\)이 주어졌다고 가정하고, 그 해를 \(x_1,x_2,\cdots,x_5\) 라 하자.
정리 1에 의하여, \(F=\mathbb{C}(s_1,s_2,\cdots,s_5)\)의 적당한 거듭제곱근 체확장 \(R\)과 원소 \(v_0,v_2,v_3,v_4,\rho \in R\)이 존재하여, \(x_1=v_0+{\sqrt[5]\rho}+v_2{\sqrt[5]\rho^2}+v_3{\sqrt[5]\rho^3}+v_4{\sqrt[5]\rho^4}\) 의 꼴로 쓸 수 있다.
한편 정리 4에 의하여, 거듭제곱근 체확장 \(R\)과 원소 \(v_0,v_2,v_3,v_4,\rho \in R\) 는 모두 \(\sigma,\tau\)에 의해 불변이다. 정리 4를 한번 더 적용하면, \(\sqrt[5]\rho\) 도 역시 \(\sigma,\tau\)에 의하여 불변이다.
따라서 \(x_1=v_0+{\sqrt[5]\rho}+v_2{\sqrt[5]\rho^2}+v_3{\sqrt[5]\rho^3}+v_4{\sqrt[5]\rho^4}\) 의 우변은 \(\sigma\)에 의하여 불변이다. 그러나 \(x_1\)은 \(\sigma\)에 의하여 불변일 수 없으므로 모순이다. ■
Monodromy proof
Consider \(3w^5-25w^3+60w-z=0\).
For \(z=\pm 38\) and \(z=\pm 16\), the above equation has four distinct roots.
These are the branch points and determines the Riemann surfaces.
Then the monodromy group is acting as a permutation of sheets and not solvable.
We can apply this monodromy idea to the computation of Galois groups of number fields.
regular proof
\(f(x)=2x^5-5x^4+5\) is the irreducible polynomial of degree 5 over the rationals.
It has two complex and 3 real roots.
This implies the Galois group is \(S_5\).
일반적인 n차 방정식
일반적인 방정식
\(x^n - s_{1} x^{n-1} + s_{2} x^{n-2} + \cdots + (-1)^{n-1}s_{n-1} x +(-1)^n s_n= 0\)
\(K=\mathbb{C}(x_1,\cdots,x_n)\)
\(F=\mathbb{C}(s_1,\cdots,s_n)\)
역사
- 1820년대 아벨에 의해 증명
- http://www.google.com/search?hl=en&tbs=tl:1&q=quintic+equation
- 수학사연표
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Abel–Ruffini_theorem
- http://en.wikipedia.org/wiki/radical_extension
링크
관련논문
- Abel's Proof
- Peter Pesic, Chapter 6. 'Abel's proof' 85-94p (pdf)
- Galois' Theory of Algebraic Equations
- Jean-Pierre Tignol, Chapter 13. Ruffini and Abel on general equations (pdf)
- Elliptic functions and elliptic integrals[1]
- Viktor Prasolov, Yuri Solovyev, 6.5 The Abel theorem on the solvability in radicals of the general quinti equation (pdf)
- Variations on the theme of solvability by radicals
- A. G. Khovanskii, Proceedings of the Steklov Institute of Mathematics, Volume 259, Number 2 / 2007년 12월
- On solvability and unsolvability of equations in explicit form
- A G Khovanskii, Russian Math. Surveys 2004, 59 (4), 661-736
- Niels Hendrik Abel and Equations of the Fifth Degree
- Michael I. Rosen, The American Mathematical Monthly, Vol. 102, No. 6 (Jun. - Jul., 1995), pp. 495-505