"이계 선형 미분방정식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로) |
||
155번째 줄: | 155번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 11월 2일 (금) 07:29 판
이 항목의 수학노트 원문주소
개요
- 다음 형태로 주어지는 미분방정식
\(\frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)y=g(x)\)
예
- 상수계수 이계 선형미분방정식
\(ay''+by'+cy=0\)
- 초기하 미분방정식(Hypergeometric differential equations)
\(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\)
론스키안(Wronskian)
- 론스키안(Wronskian)은 미분방정식
- \(\frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)y=0\)
의 일차독립인 두 해, \(y_1,y_2\)에 대하여 다음과 같이 정의된다
\(\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}\) - 정리
\(\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\,c e^{-\int{p}\,dz}\)
(증명)
\(W=\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\,y_1y_2'-y_1'y_2\)
\(W'=y_1'y_2'+y_1y_2''-y_1''y_2-y_1'y_2'=y_1(-py_2'-qy_2)-(-py_1'-qy_1)y_2=-p(y_1y_2'-y_1'y_2)=-pW\)
따라서 적당한 상수 c에 대하여, \(W=\,c e^{-\int{p}\,dz}\) ■
미분방정식의 변환 (Q-form)
- \(y''+p(x)y'+q(x)y=0\) 의 가운데 \( p(x)y\) 항을 적당한 변환에 의해 없앨 수 있다
\(\sigma(x)=e^{-\frac{1}{2} \int p(x) \, dx}\) 로 두자 .
\(y(x)=\sigma(x)u(x)\) 가 미분방정식의 해이면,
\(u''(x)-\frac{1}{4} u(x) \left(2 p'(x)+p(x)^2-4 q(x)\right)=0\) 가 성립한다
특별히 이를 초기하 미분방정식(Hypergeometric differential equations) 에 응용할 경우,
\( p(z)=\frac{c-z (a+b+1)}{(1-z) z}\), \(q(z)=-\frac{a b}{(1-z) z}\) 로 두면,
\(q(z)-\frac{1}{4} p(z)^2-\frac{p'(z)}{2}=\frac{1}{4}\left(\frac{1-\alpha ^2}{z^2}+\frac{1-\gamma ^2}{(z-1)^2}+\frac{\alpha ^2+\gamma ^2-\beta ^2-1}{z(z-1)}\right)\) 을 얻는다.
여기서 \(\alpha =1-c,\beta =a-b,\gamma =-a-b+c\).
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxNkloSUtXMkszZ1U/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문