"코쉬-리만 방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 수학노트 원문주소</h5> | |
* [[코쉬-리만 방정식]] | * [[코쉬-리만 방정식]] | ||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요</h5> | |
* 복소해석함수 <math>f (x + iy) = u(x,y) + iv(x,y)</math> 의 실수부와 허수부가 만족하는 조건<br><math>{\partial u \over \partial x} = {\partial v \over \partial y}</math>, <math>{\partial u \over \partial y} = -{\partial v \over \partial x}</math><br> | * 복소해석함수 <math>f (x + iy) = u(x,y) + iv(x,y)</math> 의 실수부와 허수부가 만족하는 조건<br><math>{\partial u \over \partial x} = {\partial v \over \partial y}</math>, <math>{\partial u \over \partial y} = -{\partial v \over \partial x}</math><br> | ||
18번째 줄: | 18번째 줄: | ||
− | + | ==코쉬-리만 연산자</h5> | |
34번째 줄: | 34번째 줄: | ||
− | + | ==역사</h5> | |
45번째 줄: | 45번째 줄: | ||
− | + | ==메모</h5> | |
55번째 줄: | 55번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
61번째 줄: | 61번째 줄: | ||
− | + | ==수학용어번역</h5> | |
* 단어사전<br> | * 단어사전<br> | ||
78번째 줄: | 78번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스</h5> | |
* | * | ||
93번째 줄: | 93번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* [http://ko.wikipedia.org/wiki/%EC%BD%94%EC%8B%9C-%EB%A6%AC%EB%A7%8C_%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/코시-리만_방정식] | * [http://ko.wikipedia.org/wiki/%EC%BD%94%EC%8B%9C-%EB%A6%AC%EB%A7%8C_%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/코시-리만_방정식] | ||
106번째 줄: | 106번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
114번째 줄: | 114번째 줄: | ||
− | + | ==관련논문</h5> | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
124번째 줄: | 124번째 줄: | ||
− | + | ==관련도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 04:26 판
==이 항목의 수학노트 원문주소
==개요
- 복소해석함수 \(f (x + iy) = u(x,y) + iv(x,y)\) 의 실수부와 허수부가 만족하는 조건
\({\partial u \over \partial x} = {\partial v \over \partial y}\), \({\partial u \over \partial y} = -{\partial v \over \partial x}\) - 복소평면(또는 그 부분집합)을 유클리드 메트릭이 주어진 리만다양체로 생각할 때, 각도를 보존하는 등각 사상 (conformal mapping) 임을 말해준다
==코쉬-리만 연산자
\(\frac{\partial}{\partial z} = \frac{1}{2} \Bigl( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \Bigr)\)
\(\frac{\partial}{\partial\bar{z}}= \frac{1}{2} \Bigl( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \Bigr)\)
==역사
==메모
- Math Overflow http://mathoverflow.net/search?q=
==관련된 항목들
==수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
==매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/코시-리만_방정식
- http://en.wikipedia.org/wiki/Cauchy–Riemann_equations
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
==리뷰논문, 에세이, 강의노트
==관련논문
==관련도서