"타원적분"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 타원적분로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">타원 둘레의 길이</h5> | ||
+ | |||
+ | * 역사적으로 [[타원 둘레의 길이]]를 구하는 적분에서 그 이름이 기원함. | ||
+ | * 타원 <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>의 둘레의 길이는 <math>4aE(k)</math> 로 주어짐.<br><math>k=\sqrt{1-\frac{b^2}{a^2}}</math><br><math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">타원적분</h5> | ||
+ | |||
+ | * 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름 | ||
+ | |||
+ | <math>\int R(x,y)\,dx</math> | ||
+ | |||
+ | 여기서 <math>R(x,y)</math>는 <math>x,y</math>의 유리함수이고, <math>y^2</math>는 중근을 갖지 않는 <math>x</math>의 3차식 또는 4차식으로 주어짐. | ||
+ | |||
+ | * 예를 들자면,<br> <math>\int \frac{dx}{\sqrt{1-x^4}}</math><br><math>\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br> <br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">일종타원적분과 이종타원적분</h5> | ||
+ | |||
+ | * [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K (complete elliptic integral of the first kind)]]<br><math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br><math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math><br> | ||
+ | * 이종완전타원적분<br><math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br><math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math><br> | ||
+ | * [[초기하급수(Hypergeometric series)]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">르장드르의 항등식</h5> | ||
+ | |||
+ | : | ||
+ | :* 일종타원적분과 이종타원적분 사이에는 다음과 같은 관계가 성립 | ||
+ | |||
+ | <math>E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}</math> | ||
+ | |||
+ | 또는 <math>\theta+\phi=\frac{\pi}{2}</math> 에 대하여 | ||
+ | |||
+ | <math>E(\sin\theta)K(\sin\phi)+E(\sin\phi)K(\sin\theta)-K(\sin\theta)K(\sin\phi)=\frac{\pi}{2}</math> | ||
+ | |||
+ | * 특별히 다음과 같은 관계가 성립함<br> | ||
+ | |||
+ | <math>2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2}</math> | ||
+ | |||
+ | [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]]에 응용 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">덧셈공식</h5> | ||
+ | |||
+ | * 파그나노의 공식<br><math>\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx</math><br> 여기서 <math>A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}</math><br> | ||
+ | * 오일러의 일반화<br><math>p(x)=1+mx^2+nx^4</math>일 때,<br><math>\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx</math><br> 여기서 <math>B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
==== 하위페이지 ==== | ==== 하위페이지 ==== | ||
5번째 줄: | 78번째 줄: | ||
** [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]<br> | ** [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]<br> | ||
** [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K (complete elliptic integral of the first kind)]]<br> | ** [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K (complete elliptic integral of the first kind)]]<br> | ||
− | ** [[타원 둘레의 길이]] | + | ** [[타원 둘레의 길이]] |
− | + | ** [[타원적분(통합됨)|타원적분]] | |
− | ** [[타원적분(통합됨)|타원적분]] | + | |
− | + | ||
− | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5> | ||
− | < | + | * [[타원곡선]] |
+ | * [[타원함수]]<br> | ||
+ | ** [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]<br> | ||
+ | |||
+ | * [[타원적분|타원적분, 타원함수, 타원곡선]]<br> | ||
+ | ** [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|lemniscate 적분]] | ||
+ | ** [[타원함수]] | ||
+ | ** [[타원곡선]] | ||
+ | ** [[란덴변환(Landen's transformation)|랜든변환(Landen's transformation)]] | ||
+ | * [[자코비 세타함수]] | ||
+ | * [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-초기하급수]] | ||
+ | * [[대수적 함수와 아벨적분]] | ||
− | <h5>관련된 | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5> |
27번째 줄: | 112번째 줄: | ||
− | <h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5> |
− | * | + | * http://www.google.com/dictionary?langpair=en|ko&q= |
− | ** http:// | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> |
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
− | <h5> | + | |
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
+ | ** http://www.research.att.com/~njas/sequences/?q= | ||
40번째 줄: | 136번째 줄: | ||
− | <h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5> |
− | |||
− | |||
− | * | + | * http://www.jstor.org/action/doBasicSearch?Query= |
+ | * http://dx.doi.org/ | ||
− | <h5>관련도서 및 추천도서</h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
54번째 줄: | 149번째 줄: | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= | ||
* 도서검색<br> | * 도서검색<br> | ||
− | ** http:// | + | ** http://books.google.com/books?q= |
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
** http://book.daum.net/search/mainSearch.do?query= | ** http://book.daum.net/search/mainSearch.do?query= | ||
61번째 줄: | 157번째 줄: | ||
− | <h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5> |
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | * [http://math.dongascience.com/ 수학동아] | ||
+ | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] | ||
+ | * [http://betterexplained.com/ BetterExplained] | ||
− | + | <br> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">표준적인 도서 및 추천도서</h5> |
− | * | + | * [http://www.amazon.com/Functions-Integrals-Translations-Mathematical-Monographs/dp/0821805878 Elliptic functions and elliptic integrals]<br> |
− | + | ** Viktor Prasolov, Yuri Solovyev | |
− | ** | + | * [http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]<br> |
− | * | + | ** Jonathan M. Borwein, Peter B. Borwein |
− | |||
− | ** | ||
92번째 줄: | 192번째 줄: | ||
− | <h5> | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">위키링크</h5> |
− | * | + | * http://en.wikipedia.org/wiki/Elliptic_integral |
− | |||
− | + | ||
− | * http:// | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5> |
− | * http:// | + | |
− | * [http://www. | + | * [http://www.springerlink.com/content/b365w3511067g184/ In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.]<br> |
+ | ** Rice, Adrian, 48-57, The Mathematical Intelligencer, Volume 30, Number 2 / 2008년 3월<br> | ||
+ | * [http://www.ams.org/bull/2007-44-04/S0273-0979-07-01178-0/home.html Euler and algebraic geometry]<br> | ||
+ | ** Burt Totaro, Bull. Amer. Math. Soc. 44 (2007), 541-559.<br> | ||
+ | * [http://www.springerlink.com/content/t32h69374h887w33/ The Lemniscate and Fagnano's Contributions to Elliptic Integrals]<br> | ||
+ | ** AYOUB R | ||
+ | * [http://www.math.tulane.edu/~vhm/papers_html/EU.pdf A property of Euler's elastic curve] | ||
+ | * [http://www.springerlink.com/content/911pnwauaeggxk13/ The story of Landen, the hyperbola and the ellipse]<br> | ||
+ | ** Elemente der Mathematik, Volume 57, Number 1 / 2002년 2월 | ||
+ | |||
+ | * [http://www.jstor.org/stable/2687483 Three Fermat Trails to Elliptic Curves]<br> | ||
+ | ** Ezra Brown, <cite style="line-height: 2em;">The College Mathematics Journal</cite>, Vol. 31, No. 3 (May, 2000), pp. 162-172 | ||
+ | * [http://www.jstor.org/stable/2974515 Elliptic Curves]<br> | ||
+ | ** John Stillwell, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 102, No. 9 (Nov., 1995), pp. 831-837 | ||
+ | * [http://www.jstor.org/stable/2321821 Abel's Theorem on the Lemniscate]<br> | ||
+ | ** Michael Rosen, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395 | ||
+ | ** [http://www.jstor.org/stable/2687483 Three Fermat Trails to Elliptic Curves]<br> | ||
+ | *** Ezra Brown, <cite style="line-height: 2em;">The College Mathematics Journal</cite>, Vol. 31, No. 3 (May, 2000), pp. 162-172 | ||
+ | ** [http://www.jstor.org/stable/2974515 Elliptic Curves]<br> | ||
+ | *** John Stillwell, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 102, No. 9 (Nov., 1995), pp. 831-837 | ||
+ | ** [http://www.jstor.org/stable/2321821 Abel's Theorem on the Lemniscate]<br> | ||
+ | *** Michael Rosen, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395 | ||
− | + | ||
− | + | <br> |
2009년 12월 2일 (수) 15:33 판
이 항목의 스프링노트 원문주소
타원 둘레의 길이
- 역사적으로 타원 둘레의 길이를 구하는 적분에서 그 이름이 기원함.
- 타원 \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이는 \(4aE(k)\) 로 주어짐.
\(k=\sqrt{1-\frac{b^2}{a^2}}\)
\(E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)
타원적분
- 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름
\(\int R(x,y)\,dx\)
여기서 \(R(x,y)\)는 \(x,y\)의 유리함수이고, \(y^2\)는 중근을 갖지 않는 \(x\)의 3차식 또는 4차식으로 주어짐.
- 예를 들자면,
\(\int \frac{dx}{\sqrt{1-x^4}}\)
\(\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)
일종타원적분과 이종타원적분
- 일종타원적분 K (complete elliptic integral of the first kind)
\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)
\(K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\) - 이종완전타원적분
\(E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)
\(E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)\) - 초기하급수(Hypergeometric series)
르장드르의 항등식
-
- 일종타원적분과 이종타원적분 사이에는 다음과 같은 관계가 성립
\(E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\)
또는 \(\theta+\phi=\frac{\pi}{2}\) 에 대하여
\(E(\sin\theta)K(\sin\phi)+E(\sin\phi)K(\sin\theta)-K(\sin\theta)K(\sin\phi)=\frac{\pi}{2}\)
- 특별히 다음과 같은 관계가 성립함
\(2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2}\)
AGM과 파이값의 계산에 응용
덧셈공식
- 파그나노의 공식
\(\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx\)
여기서 \(A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}\) - 오일러의 일반화
\(p(x)=1+mx^2+nx^4\)일 때,
\(\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx\)
여기서 \(B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}\)
메모
하위페이지
관련된 다른 주제들
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)
블로그
표준적인 도서 및 추천도서
- Elliptic functions and elliptic integrals
- Viktor Prasolov, Yuri Solovyev
- Pi and the AGM
- Jonathan M. Borwein, Peter B. Borwein
위키링크
관련논문
- In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.
- Rice, Adrian, 48-57, The Mathematical Intelligencer, Volume 30, Number 2 / 2008년 3월
- Rice, Adrian, 48-57, The Mathematical Intelligencer, Volume 30, Number 2 / 2008년 3월
- Euler and algebraic geometry
- Burt Totaro, Bull. Amer. Math. Soc. 44 (2007), 541-559.
- Burt Totaro, Bull. Amer. Math. Soc. 44 (2007), 541-559.
- The Lemniscate and Fagnano's Contributions to Elliptic Integrals
- AYOUB R
- A property of Euler's elastic curve
- The story of Landen, the hyperbola and the ellipse
- Elemente der Mathematik, Volume 57, Number 1 / 2002년 2월
- Three Fermat Trails to Elliptic Curves
- Ezra Brown, The College Mathematics Journal, Vol. 31, No. 3 (May, 2000), pp. 162-172
- Elliptic Curves
- John Stillwell, The American Mathematical Monthly, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
- Abel's Theorem on the Lemniscate
- Michael Rosen, The American Mathematical Monthly, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395
- Three Fermat Trails to Elliptic Curves
- Ezra Brown, The College Mathematics Journal, Vol. 31, No. 3 (May, 2000), pp. 162-172
- Elliptic Curves
- John Stillwell, The American Mathematical Monthly, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
- Abel's Theorem on the Lemniscate
- Michael Rosen, The American Mathematical Monthly, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395