"포흐하머 (Pochhammer) 기호"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 스프링노트 원문주소== | |
* [[Pochhammer 기호와 캐츠(Kac) 기호]] | * [[Pochhammer 기호와 캐츠(Kac) 기호]] | ||
13번째 줄: | 13번째 줄: | ||
− | + | ==Pochhammer 기호== | |
* falling 팩토리얼이라 불리기도 함<br><math>(a)_0 = 1</math><br><math>(a)_n=a(a-1)(a-2)...(a-n+1)</math><br> | * falling 팩토리얼이라 불리기도 함<br><math>(a)_0 = 1</math><br><math>(a)_n=a(a-1)(a-2)...(a-n+1)</math><br> | ||
27번째 줄: | 27번째 줄: | ||
− | + | ==q-Pochhammer 기호== | |
* q-analogue [[q-Pochhammer 기호]]<br> | * q-analogue [[q-Pochhammer 기호]]<br> | ||
37번째 줄: | 37번째 줄: | ||
− | + | ==캐츠(Kac)의 기호== | |
* <math>n\in\mathbb{N}</math> 인 경우<br><math>{(1-a)_q^n}:=(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1})</math><br> | * <math>n\in\mathbb{N}</math> 인 경우<br><math>{(1-a)_q^n}:=(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1})</math><br> | ||
81번째 줄: | 81번째 줄: | ||
− | + | ==수학용어번역== | |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= |
2012년 11월 1일 (목) 13:24 판
이 항목의 스프링노트 원문주소
개요
Pochhammer 기호
- falling 팩토리얼이라 불리기도 함
\((a)_0 = 1\)
\((a)_n=a(a-1)(a-2)...(a-n+1)\)
예)
원소가 k개인 집합에서 n개인 집합으로 가는 단사함수의 개수
q-Pochhammer 기호
- q-analogue q-Pochhammer 기호
캐츠(Kac)의 기호
- \(n\in\mathbb{N}\) 인 경우
\({(1-a)_q^n}:=(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1})\)
- \(n\in\mathbb{Z}\) 인 경우
\({(1-a)_q^n}:=(a;q)_n = \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}=\frac{(1-a)_q^{\infty}}{(1-aq^n)_q^{\infty}}\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxamM4dllDbTlNRDg/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://en.wikipedia.org/wiki/Quantum_calculus
- http://en.wikipedia.org/wiki/Pochhammer_symbol
- http://en.wikipedia.org/wiki/Q-Pochhammer_symbol
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- Quantum calculus
- Victor Kac, Pokman Cheung, Universitext, Springer-Verlag, 2002