"Q-이항정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
42번째 줄: 42번째 줄:
  
 
==오일러곱과 가우스다항식==
 
==오일러곱과 가우스다항식==
 +
*  위의 q-이항정리로부터 [[오일러의 q-초기하급수에 대한 무한곱 공식]]을 얻을 수 있다
 +
:<math>(-z;q)_{\infty}=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 +
:<math>\frac{1}{(z;q)_{\infty}}=\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 +
*  가우스 공식:<math>(-z;q)_{n}=\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r</math> (증명) q-이항정리에 <math>a=q^{-N}</math>, <math>z\to zq^{N}</math> 를 사용 ■
 +
*  하이네 공식:<math>\prod_{r=0}^{n-1}\frac{1}{1-zq^r}=\sum_{r=0}^{\infty} \begin{bmatrix} n+r-1\\ r\end{bmatrix}_{q} z^r</math>
 +
*  하이네 공식은  [[중복조합의 공식 H(n,r) =C(n+r-1,r)]] 에 있는 다음 식의 q-analogue이다:<math>\frac{1}{(1-x)^n}=\sum_{k=0}^{\infty}\textstyle\left\langle{n\atop k}\right\rangle x^k</math>
  
* 위의 q-이항정리로부터 [[q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)|q-초기하급수(q-hypergeometric series)]]의 오일러곱을 얻을 수 있다:<math>(-z;q)_{\infty}=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>:<math>\frac{1}{(z;q)_{\infty}}=\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br>
+
   
*  가우스 공식:<math>(-z;q)_{n}=\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r</math><br> (증명)<br> q-이항정리에 <math>a=q^{-N}</math>, <math>z\to zq^{N}</math> 를 사용 ■<br>
 
*  하이네 공식:<math>\prod_{r=0}^{n-1}\frac{1}{1-zq^r}=\sum_{r=0}^{\infty} \begin{bmatrix} n+r-1\\ r\end{bmatrix}_{q} z^r</math><br>
 
*  하이네 공식은  [[중복조합의 공식 H(n,r) =C(n+r-1,r)]] 에 있는 다음 식의 q-analogue이다:<math>\frac{1}{(1-x)^n}=\sum_{k=0}^{\infty}\textstyle\left\langle{n\atop k}\right\rangle x^k</math><br>
 
  
 
 
 
 
 
  
 
==역사==
 
==역사==

2013년 3월 14일 (목) 10:12 판

개요

\[_{1}\phi_0 \left[\begin{matrix} a \\ - \end{matrix} ; q,z \right]=\sum_{n=0}^\infty \frac {(a;q)_n} {(q;q)_n} z^n\]

  • 초기하급수의 오일러곱과 이항계수(가우스 다항식)에 대한 정리를 특별한 경우로 가진다

 

이항정리

\[(1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots\] \[\frac{1}{(1-z)^{a}}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=1+az+\frac{a(a+1)}{2!}z^2+\frac{a(a+1)(a+2)}{3!}z^3+\cdots = \,_1F_0(a;z)\]

 

 

q-이항정리의 유도

\[\frac{1}{(1-z)^{a}}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n\]

  • q-analogue

\[\sum_{n=0}^{\infty}\frac{(q^{\alpha};q)_n}{(q;q)_n}z^n\]

 

 

q-이항정리

  • (정리)\[\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^n_q}{(1-q)^n_q}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty \frac {1-azq^n}{1-zq^n}, |z|<1\]

 

 

오일러곱과 가우스다항식

\[(-z;q)_{\infty}=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\] \[\frac{1}{(z;q)_{\infty}}=\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]

  • 가우스 공식\[(-z;q)_{n}=\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\] (증명) q-이항정리에 \(a=q^{-N}\), \(z\to zq^{N}\) 를 사용 ■
  • 하이네 공식\[\prod_{r=0}^{n-1}\frac{1}{1-zq^r}=\sum_{r=0}^{\infty} \begin{bmatrix} n+r-1\\ r\end{bmatrix}_{q} z^r\]
  • 하이네 공식은 중복조합의 공식 H(n,r) =C(n+r-1,r) 에 있는 다음 식의 q-analogue이다\[\frac{1}{(1-x)^n}=\sum_{k=0}^{\infty}\textstyle\left\langle{n\atop k}\right\rangle x^k\]



역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문